
1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 1

Devi Ahilya Vishvavidyalaya

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 2

What is a Computer Program?

A program is a set of step-by-step
instructions to the computer telling it to
carry out the tasks that you want it to do
to produce the results you want.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 3

What is Programming?

• Programming consists of two distinct
steps:

• algorithmic design (the problem solving
stage, analogous to the work of an
architect designing a building)

• coding (the construction phase)

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 4

Levels of Programming
Languages

• Machine language
• Assembly Language
• High Level Languages

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 5

Machine Language

• Actual binary code that gives basic
instructions to the computer.

• These are usually simple commands
like adding two numbers or moving
data from one memory location to
another.

• Different for each computer processor

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 6

Assembly Language
• A way for humans to program computers

directly without memorizing strings of binary
numbers.

• There is a one-to-one correspondence with
machine code.
– For example ADD and MOV are mnemonics for

addition and move operations that can be specified
in single machine language instructions.

Different for each computer processor

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 7

High-level language

• Permits humans to write complex
programs without going step-by step.

• High-level languages include Pascal,
FORTRAN, Java, Visual Basic, and
many more.

• One command in a high-level
language may translate to tens of
machine language instructions.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 8

Computers can only run machine language
programs directly.

Assembly language programs are assembled, or
translated into machine language.

Likewise, programs written in high-level languages,
like Java, must also be translated into machine
language before they can be run. To do this
translation compile a program.

Translation

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 9

Translation

• Compilers and linkers translate a high
level program into executable machine
code

#include <stdio.h>

int main()
{
printf(“Hello World”);

return 0;
}

Source code Executable code

10100110 01110110
00100110 00000000
11111010 11111010
01001110 10100110
11100110 10010110
11001110 00101110
10100110 01001110
11111010 01100110
01001110 10000110

etc...

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 10

Structured Programming
• STRUCTURED PROGRAMMING ≡ A

technique for organizing and coding computer
programs in which a hierarchy of modules is
used, each having a single entry and a single
exit point, and in which control is passed
downward through the structure withOUT
UNconditional branches to higher levels of
the structure. Three types of control flow are
used: (1) sequential, (2) selection, and (3)
iteration.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 11

Programming language C

• C is a general purpose programming language.

• C is a middle level language.

• C is a structured language.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 12

Why C is called “a middle level language”?

C contains the features of high level language
portability — it is easy to adapt software written
for one type of computer to another type. the
functionality low level language.

- operators such as &, |,>,< etc. simulate to low
level instruction codes.
- Direct manipulation of bits, bytes and addresses.

Programming language C

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 13

Writing C Programs

• A programmer uses a text editor to create or
modify files containing C code.

• Code is also known as source code.

• A file containing source code is called a source
file.

• After a C source file has been created, the
programmer must invoke the C compiler
before the program can be executed (run).

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 14

Invoking the tcc Compiler
 At the prompt, type

 tcc pgm.c

 where pgm.c is the C program source
file.

 There is a better way use of IDE instead of
command.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 15

The Result : pgm.obj, pgm.exe
• If there are no errors in pgm.c, this command

produces an executable file, which is one that
can be executed (run).

• The tcc compiler puts exe extension of the
executable file. Also the obj file contains the
machine level code.

• To execute the program, at the prompt, type
pgm.exe

• Although we call this process “compiling a
program,” what actually happens is more
complicated.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 16

3 Stages of Compilation
Stage 1: Preprocessing

– Performed by a program called the preprocessor
– Modifies the source code (in RAM) according to

preprocessor directives (preprocessor
commands) embedded in the source code

– Strips comments and white space from the code

– The source code as stored on disk is not modified.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 17

3 Stages of Compilation (con’t)
Stage 2: Compilation

• Performed by a program called the compiler
• Translates the preprocessor-modified source

code into object code (machine code)
• Checks for syntax errors and warnings
• Saves the object code to a disk file, if instructed

to do so (we will not do this).
• If any compiler errors are received, no object code

file will be generated.
• An object code file will be generated if only

warnings, not errors, are received.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 18

3 Stages of Compilation (con’t)
Stage 3: Linking

• Combines the program object code with other
object code to produce the executable file.

• The other object code can come from the Run-
Time Library, other libraries, or object files that
you have created.

• Saves the executable code to a disk file. On
the Linux system, that file is called a.out.

• If any linker errors are received, no executable file
will be generated.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 19

Program Development

Source File pgm.c

Program Object Code File pgm.obj

Executable File pgm.exe

Preprocessor

Modified Source Code in RAM

Compiler

Linker

Other Object Code Files (if any)

Editor

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 20

A Simple C Program
 /* Filename: hello.c
 Author: Brian Kernighan & Dennis Ritchie
 Date written: ?/?/1978
 Description: This program prints the greeting

“Hello, World!”
 */

 #include <stdio.h>

 int main (void)
 {
 printf (“Hello, World!\n”) ;
 return 0 ;
 }

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 21

Anatomy of a C Program
 program header comment

 preprocessor directives (if any)

 int main ()
 {
 statement(s)
 return 0 ;
 }

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 22

Program Header Comment
• A comment is descriptive text used to help a

reader of the program understand its
content.

• All comments must begin with the characters
/* and end with the characters */

• These are called comment delimiters
• The program header comment always

comes first.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 23

Preprocessor Directives
• Lines that begin with a # in column 1 are

called preprocessor directives
(commands).

• Example: the #include <stdio.h> directive
causes the preprocessor to include a copy of
the standard input/output header file stdio.h at
this point in the code.

• This header file was included because it
contains information about the printf ()
function that is used in this program.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 24

stdio.h

• When we write our programs, there are
libraries of functions to help us so that we
do not have to write the same code over
and over again.

• Some of the functions are very complex
and long. Not having to write them
ourselves make it easier and faster to
write programs.

• Using the functions will also make it easier
to learn to program!

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 25

int main (void)

• Every program must have a function called
main. This is where program execution begins.

• main() is placed in the source code file as the
first function for readability.

• The reserved word “int” indicates that main()
returns an integer value.

• The parentheses following the reserved word
“main” indicate that it is a function.

• The reserved word “void” means nothing is
there.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 26

The Function Body
• A left brace (curly bracket) -- { -- begins the

body of every function. A corresponding
right brace -- } -- ends the function body.

• The style is to place these braces on
separate lines in column 1 and to indent the
entire function body 3 to 5 spaces.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 27

printf (“Hello, World!\n”) ;

• This line is a C statement.
• It is a call to the function printf () with a

single argument (parameter), namely the
string “Hello, World!\n”.

• Even though a string may contain many
characters, the string itself should be
thought of as a single quantity.

• Notice that this line ends with a semicolon.
All statements in C end with a semicolon.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 28

return 0 ;
• Because function main() returns an integer value,

there must be a statement that indicates what this
value is.

• The statement
return 0 ;

indicates that main() returns a value of zero to
the operating system.

• A value of 0 indicates that the program successfully
terminated execution.

• Do not worry about this concept now. Just
remember to use the statement.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 29

Another C Program
/***
** File: proj1.c
** Author: ___________
** Date: 9/15/01
** E-mail: _________________
**
** This program prompts the user for two integer values then displays
** their product.
**
***/

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 30

Another C Program (con’t)
#include <stdio.h>

int main(void)

{

int value1, value2, product ;

printf(“Enter two integer values: “) ;

scanf(“%d%d”, &value1, &value2) ;

product = value1 * value2 ;

printf(“Product = %d\n”, product) ;

return 0 ;

}

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 31

Tokens
• The smallest element in the C language is

the token.
• It may be a single character or a sequence

of characters to form a single item.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 32

Tokens are:

• Tokens can be:
– Numeric constants
– Character constants
– String constants
– Keywords
– Names (identifiers)
– Punctuation
– Operators

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 33

Numeric Constants

• Numeric constants are an uninterrupted
sequence of digits (and may contain a
period). They never contain a comma.

• Examples:
– 123
– 98.6
– 1000000

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 34

Character Constants

• One character from a defined character
set.

• Surrounded on the single quotation mark.
• Examples:

– ‘A’
– ‘a’
– ‘$’
– ‘4’

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 35

String Constants

• A sequence characters surrounded by
double quotation marks.

• Considered a single item.
• Examples:

– “DAVV”
– “I like ice cream.”
– “123”
– “DHOOM-2”
– “car”

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 36

Keywords

• Sometimes called reserved words.
• Are defined as a part of the C language.
• Can not be used for anything else!
• Examples:

– int
– while
– for

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 37

Names

• Sometimes called identifiers.
• Can be of anything length, but on the first 31 are

significant (too long is as bad as too short).
• Are case sensitive:

– abc is different from ABC
• Must begin with a letter and the rest can be

letters, digits, and underscores.
• There can be one exception to beginning letter

that variable name can start with underscore(_)
but it is used by C library.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 38

Punctuation

• Semicolons, colons, commas,
apostrophes, quotation marks, braces,
brackets, and parentheses.

• ; : , ‘ “ [] { } ()

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 39

Operators

• There are operators for:
– assignments
– mathematical operations
– relational operations
– Boolean operations
– bitwise operations
– shifting values
– calling functions
– subscripting
– obtaining the size of an object
– obtaining the address of an object
– referencing an object through its address

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 40

What Are Variables in C?
• Variables in C have the same meaning as

variables in algebra. That is, they represent
some unknown, or variable, value.

x = a + b
z + 2 = 3(y - 5)

• Remember that variables in algebra are
represented by a single alphabetic
character.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 41

Naming Variables
• Variables in C may be given representations

containing multiple characters. But there are
rules for these representations.

• Variable names (identifiers) in C
– May only consist of letters, digits, and

underscores
– May be as long as you like, but only the first 31

characters are significant
– May not begin with a digit
– May not be a C reserved word (keyword)

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 42

Reserved Words (Keywords) in
C

• auto break
• case char
• const continue
• default do
• double else
• enum extern
• float for
• goto if

 int long
 register return
 short signed
 sizeof static
 struct switch
 typedef union
 unsigned void
 volatile while

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 43

Naming Conventions
• C programmers generally agree on the

following conventions for naming variables.
– Begin variable names with lowercase letters

– Use meaningful identifiers
– Separate “words” within identifiers with

underscores or mixed upper and lower case.
– Examples: surfaceArea surface_Area

surface_area
– Be consistent!

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 44

Naming Conventions (con’t)
• Use all uppercase for symbolic constants

(used in #define preprocessor directives).
• Note: symbolic constants are not variables,

but make the program easier to read.
• Examples:

 #define PI 3.14159
 #define AGE 52

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 45

Case Sensitivity
• C is case sensitive

– It matters whether an identifier, such as a
variable name, is uppercase or lowercase.

– Example:
area
Area
AREA
ArEa

are all seen as different variables by the
compiler.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 46

Which Are Legal Identifiers?

 AREA area_under_the_curve
 3D num45
 Last-Chance #values
 x_yt3 pi
 num$ %done
 lucky***

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 47

Declaring Variables

• Before using a variable, you must give the
compiler some information about the variable;
i.e., you must declare it.

• The declaration statement includes the data
type of the variable.

• They must be declared just after the start of
block (i.e. start of a function) and before any
other executable statement.

• Examples of variable declarations:
 int meatballs ;
 float area ;

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 48

Declaring Variables (con’t)
• When we declare a variable

– Space is set aside in memory to hold a value of
the specified data type

– That space is associated with the variable name
– That space is associated with a unique address

• Visualization of the declaration
 int meatballs ;

meatballs

FE07

garbage

int

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 49

Notes About Variables

• You must not use a variable until you
somehow give it a value.

• You can not assume that the variable will
have a value before you give it one.
– Some compilers do, others do not! This is the

source of many errors that are difficult to find.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 50

Simple Data Types

1E–37 to 1E+37 with ten digits of precision80long double

1E–37 to 1E+37 with ten digits of precision64double

1E–37 to 1E+37 with six digits of precision32float

0 to 4,294,967,29532unsigned long int

Same as long int32signed long int

–2,147,483,648 to 2,147,483,64732long int

Same as short int16signed short int

0 to 65,53516unsigned short int

–32,768 to 32,76716short int

Same as int16signed int

0 to 65,53516unsigned int

–32,768 to 32,76716int

–128 to 1278signed char

0 to 2558unsigned char

–128 to 1278char

Minimal RangeTypical Size in Bits Type

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 51

Using Variables: Initialization
• Variables may be be given initial values, or

initialized, when declared. Examples:

int length = 7 ;

float diameter = 5.9 ;

char initial = ‘A’ ;

7

5.9

‘A’

length

diameter

initial

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 52

Using Variables: Assignment
• Variables may have values assigned to them through

the use of an assignment statement.
• Such a statement uses the assignment operator =
• This operator does not denote equality. It assigns

the value of the right-hand side of the statement (the
expression) to the variable on the left-hand side.

• Examples:
diameter = 5.9 ;
area = length * width ;

Note that only single variables (LValue) may appear
on the left-hand side of the assignment operator.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 53

Functions

• It is necessary for us to use some functions to
write our first programs.

• Functions are parts of programs that perform a
certain task and we have to give them some
information so the function can do the task.

• We will show you how to use the functions as we
go through the course and later on will show you
how to create your own.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 54

Getting Input from User

• Every process requires some input from
the user. Variables hold the input values.

• We have a function called scanf() that will
allow us to do that.

• The function scanf needs two pieces of
information to display things.
– The data type of input values
– Address where to store the values

• scanf(“%f”, &diameter);

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 55

Displaying Variables

• Variables hold values that we occasionally
want to show the person using the
program.

• We have a function called printf() that will
allow us to do that.

• The function printf needs two pieces of
information to display things.
– How to display it
– What to display

• printf(“%f\n”, &diameter);

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 56

printf(“%f\n”, diameter);

• The name of the function is “printf”.
• Inside the parentheses are:

– print specification, where we are going to
display:

• a floating point value (“%f”)
• We want to have the next thing started on a new

line (“\n”).
– We want to display the contents of the

variable diameter.
• printf() has many other capabilities.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 57

Backslash Codes

Hexadecimal constant (where N is a hexadecimal constant)\xN
Octal constant (where N is an octal constant)\N
Question mark\?
Alert\a
Vertical tab\v
Backslash\ \
Single quote\'
Double quote\"
Horizontal tab\t
Carriage return\r
New line\n
Form feed\f
Backspace\b

MeaningCode

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 58

Format Specifiers for printf and
scanf

%c%cchar
%hd%hdshort
%d%dint
%u%uunsigned int
%ld%ldlong int
%lu%luunsigned long int
%f%ffloat
%lf%fdouble
%Lf%Lflong double

Scanf specifierPrintf specifierData Type

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 59

Both printf and scanf Returns a
Value

• We can call printf as
i=810;
n=printf(“%d”,i);

• We also can call a scanf
m=scanf(“%d%f”,&i,&f)

What will be the value of n & m if every thing
goes fine.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 60

Example: Declarations and
Assignments

 #include <stdio.h>
 int main(void)
 {
 int inches, feet, fathoms ;

 fathoms = 7 ;
 feet = 6 * fathoms ;
 inches = 12 * feet ;

–
–
–

inches

feet

fathoms

garbage

fathoms

7

garbage
feet

42

garbage

504

inches

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 61

Example: Declarations and
Assignments (cont’d)

–
–
–

 printf (“Its depth at sea: \n”) ;
 printf (“ %d fathoms \n”, fathoms) ;
 printf (“ %d feet \n”, feet) ;
 printf (“ %d inches \n”, inches) ;

 return 0 ;
 }

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 62

Enhancing Our Example

• What if the depth were really 5.75
fathoms? Our program, as it is, couldn’t
handle it.

• Unlike integers, floating point numbers can
contain decimal portions. So, let’s use
floating point, rather than integer.

• Let’s also ask the user to enter the number
of fathoms, by using the scanf() function.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 63

Enhanced Program
#include <stdio.h>
int main (void)
{

float inches, feet, fathoms ;
printf (“Enter the depth in fathoms : ”) ;
scanf (“%f”, &fathoms) ;
feet = 6 * fathoms ;
inches = 12 * feet ;
printf (“Its depth at sea: \n”) ;
printf (“ %f fathoms \n”, fathoms) ;
printf (“ %f feet \n”, feet) ;
printf (“ %f inches \n”, inches) ;
return 0 ;

}

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 64

scanf (“%f”, &fathoms) ;

• The scanf() function also needs two items:
– The input specification “%f”. (Never put a “\n”

into the input specification.)
– The address of where to store the information.

(We can input more than one item at a time if
we wish, as long as we specify it correctly.)

• Notice the “&” in front of the variable name.
It says to use the address of the variable to
hold the information that the user enters.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 65

Final “Clean” Program
#include <stdio.h>

#define FEET_PER_FATHOM 6
#define INCHES_PER_FOOT 12

int main(void)
{

float inches ; /* number of inches deep */
float feet ; /* number of feet deep */
float fathoms ; /* number of fathoms deep */

/* Get the depth in fathoms from the user */

printf (“Enter the depth in fathoms : ”) ;
scanf (“%f”, &fathoms) ;

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 66

Final “Clean” Program (con’t)

/* Convert the depth to inches */
feet = FEET_PER_FATHOM * fathoms ;
inches = INCHES_PER_FOOT * feet ;

/* Display the results */
printf (“Its depth at sea: \n”) ;
printf (“ %f fathoms \n”, fathoms) ;
printf (“ %f feet \n”, feet);
printf (“ %f inches \n”, inches);
return 0 ;

}

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 67

Good Programming Practices
• Place each variable declaration on its own

line with a descriptive comment.
• Place a comment before each logical

“chunk” of code describing what it does.
• Do not place a comment on the same line as

code (with the exception of variable
declarations).

• Use spaces around all arithmetic and
assignment operators.

• Use blank lines to enhance readability.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 68

Good Programming Practices
(con’t)

• Place a blank line between the last
variable declaration and the first
executable statement of the program.

• Indent the body of the program 3 to 5
spaces -- be consistent!

• Comments should explain why you are
doing something, not what you are doing
it.
a = a + 1 /* add one to a */ /* WRONG */

/* count new student */ /* RIGHT*/

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 69

Another Sample Program
#include <stdio.h>

#define PI 3.14159

int main (void)
{

float radius = 3.0;
float area;

area = PI * radius * radius;
printf(“The area is %f.\n”, area);
return 0 ;

}

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 70

Arithmetic Operators in C

 Name Operator Example

 Addition + num1 + num2
 Subtraction - initial - spent
 Multiplication * fathoms * 6
 Division / sum / count
 Modulus % m % n

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 71

Division
• If both operands of a division expression are

integers, you will get an integer answer.
The fractional portion is thrown away.

• Examples : 17 / 5 = 3
 4 / 3 = 1
 35 / 9 = 3

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 72

Division (con’t)

• Division where at least one operand is a
floating point number will produce a
floating point answer.

• Examples : 17.0 / 5 = 3.4
 4 / 3.2 = 1.25
 35.2 / 9.1 = 3.86813
• What happens? The integer operand is

temporarily converted to a floating point,
then the division is performed.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 73

Division By Zero

• Division by zero is mathematically
undefined.

• If you allow division by zero in a program,
it will cause a fatal error. Your program
will terminate execution and give an error
message.

• Non-fatal errors do not cause program
termination, just produce incorrect results.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 74

Modulus

• The expression m % n yields the integer
remainder after m is divided by n.

• Modulus is an integer operation -- both
operands MUST be integers.

• Examples : 17 % 5 = 2
 6 % 3 = 0
 9 % 2 = 1
 5 % 8 = 5

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 75

Uses for Modulus
• Used to determine if an integer value is

even or odd

 5 % 2 = 1 odd 4 % 2 = 0 even

 If you take the modulus by 2 of an integer,
a result of 1 means the number is odd and
a result of 0 means the number is even.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 76

Arithmetic Operators
Rules of Operator Precedence
 Operator(s) Precedence & Associativity
 () Evaluated first. If nested,

innermost first. If on same level,
evaluated left to right.

 * / % Evaluated second. If there are
several, evaluated left to right.

 + - Evaluated third. If there are
several, evaluated left to right.

 = Evaluated last, right to left.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 77

Using Parentheses
• Use parentheses to change the order in

which an expression is evaluated.
 a + b * c Would multiply b * c first,

then add a to the result.
 If you really want the sum of a and b to be

multiplied by c, use parentheses to force the
evaluation to be done in the order you want.

 (a + b) * c
• Also use parentheses to clarify a complex

expression.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 78

Practice With Evaluating
Expressions

 Given integer variables a, b, c, d, and e,
where a = 1, b = 2, c = 3, d = 4,
 evaluate the following expressions:

 a + b - c + d
 a * b / c
 1 + a * b % c
 a + d % b - c
 e = b = d + c / b - a

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 79

Relational Operators
 < less than
 > greater than
 <= less than or equal to
 >= greater than or equal to
 == is equal to
 != is not equal to

 Relational expressions evaluate to the integer
 values 1 (true) or 0 (false).

 All of these operators are called binary operators
because they take two expressions as operands.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 80

Practice with Relational
Expressions

 int a = 1, b = 2, c = 3 ;

 Expression Value Expression Value
 a < c a + b >= c
 b <= c a + b == c
 c <= a a != b
 a > b a + b != c
 b >= c

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 81

Arithmetic Expressions: True or
False

• Arithmetic expressions evaluate to
numeric values.

• An arithmetic expression that has a value
of zero is false.

• An arithmetic expression that has a value
other than zero is true.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 82

Practice with Arithmetic
Expressions

 int a = 1, b = 2, c = 3 ;
 float x = 3.33, y = 6.66 ;
 Expression Numeric Value True/False
 a + b
 b - 2 * a
 c - b - a
 c - a
 y - x
 y - 2 * x

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 83

Increment and Decrement
Operators

• The increment operator ++
• The decrement operator --
• Precedence: lower than (), but higher than

* / and %
• Associativity: right to left
• Increment and decrement operators can

only be applied to variables, not to
constants or expressions

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 84

Increment Operator
• If we want to add one to a variable, we can

say:
 count = count + 1 ;
• Programs often contain statements that

increment variables, so to save on typing, C
provides these shortcuts:
 count++ ; OR ++count ;
 Both do the same thing. They change the

value of count by adding one to it.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 85

Postincrement Operator
• The position of the ++ determines when the value

is incremented. If the ++ is after the variable, then
the incrementing is done last (a postincrement).

 int amount, count ;

 count = 3 ;
 amount = 2 * count++ ;

• amount gets the value of 2 * 3, which is 6, and
then 1 gets added to count.

• So, after executing the last line, amount is 6 and
count is 4.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 86

Preincrement Operator
• If the ++ is before the variable, then the

incrementing is done first (a preincrement).

 int amount, count ;

 count = 3 ;
 amount = 2 * ++count ;

• 1 gets added to count first, then amount gets the
value of 2 * 4, which is 8.

• So, after executing the last line, amount is 8 and
count is 4.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 87

Code Example Using ++
 #include <stdio.h>
 int main ()
 {
 int i = 1 ;

 /* count from 1 to 10 */
 while (i < 11)
 {
 printf (“%d ”, i) ;
 i++ ; /* same as ++i */
 }
 return 0 ;
 }

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 88

Decrement Operator
• If we want to subtract one from a variable, we

can say:
 count = count - 1 ;
• Programs often contain statements that

decrement variables, so to save on typing, C
provides these shortcuts:
 count-- ; OR --count ;
 Both do the same thing. They change the

value of count by subtracting one from it.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 89

Postdecrement Operator
• The position of the -- determines when the value is

decremented. If the -- is after the variable, then
the decrementing is done last (a postdecrement).

 int amount, count ;

 count = 3 ;
 amount = 2 * count-- ;

• amount gets the value of 2 * 3, which is 6, and
then 1 gets subtracted from count.

• So, after executing the last line, amount is 6 and
count is 2.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 90

Predecrement Operator
• If the -- is before the variable, then the

decrementing is done first (a predecrement).

 int amount, count ;

 count = 3 ;
 amount = 2 * --count ;

• 1 gets subtracted from count first, then amount
gets the value of 2 * 2, which is 4.

• So, after executing the last line, amount is 4 and
count is 2.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 91

A Hand Trace Example
 int answer, value = 4 ;
 Code Value Answer

4 garbage

 value = value + 1 ;
 value++ ;
 ++value ;
 answer = 2 * value++ ;
 answer = ++value / 2 ;
 value-- ;
 --value ;
 answer = --value * 2 ;

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 92

Lvalue Required

answer++ = value-- / 3 ;

• In C any value that is having an address is
called an Lvalue.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 93

Practice

 Given
 int a = 1, b = 2, c = 3 ;

 What is the value of this expression?

 ++a * b - c--

 What are the new values of a, b, and c?

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 94

More Practice

 Given
 int a = 1, b = 2, c = 3, d = 4 ;

 What is the value of this expression?

 ++b / c + a * d++

 What are the new values of a, b, c, and d?

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 95

Assignment Operators
 = += -= *= /= %=
 Statement Equivalent Statement
 a = a + 2 ; a += 2 ;
 a = a - 3 ; a -= 3 ;
 a = a * 2 ; a *= 2 ;
 a = a / 4 ; a /= 4 ;
 a = a % 2 ; a %= 2 ;
 b = b + (c + 2) ; b += c + 2 ;
 d = d * (e - 5) ; d *= e - 5 ;

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 96

Practice with Assignment
Operators

 int i = 1, j = 2, k = 3, m = 4 ;

 Expression Value
 i += j + k

 j *= k = m + 5

 k -= m /= j * 2

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 97

Code Example Using /= and ++
Counting the Digits in an Integer

 #include <stdio.h>
 int main ()
 {
 int num, temp, digits = 0 ;
 temp = num = 4327 ;

while (temp > 0)
 {

printf (“%d\n”, temp) ;
 temp /= 10 ;
 digits++ ;
 }
 printf (“There are %d digits in %d.\n”, digits, num) ;
 return 0 ;
 }

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 98

Operator Precedence and
Associativity

Precedence Associativity

() left to right/inside-out
++ -- ! + (unary) - (unary) (type) right to left
* / % left to right
+ (addition) - (subtraction) left to right
< <= > >= left to right
== != left to right
&& left to right
|| left to right
= += -= *= /= %= right to left
, (comma) right to left

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 99

Review: Structured
Programming

• All programs can be written in terms of
only three control structures
– The sequence structure

• Unless otherwise directed, the statements are
executed in the order in which they are written.

– The selection structure
• Used to choose among alternative courses of

action.
– The repetition structure

• Allows an action to be repeated while some
condition remains true.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 100

Selection: the if statement

 if (condition)
 {
 statement(s) /* body of the if statement */
 }

 The braces are not required if the body contains
only a single statement. However, they are a
good idea and are required by the 104 C Coding
Standards.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 101

Examples
if (age >= 18)

{

printf(“Vote!\n”) ;

}

if (value == 0)
{

printf (“The value you entered was zero.\n”) ;
printf (“Please try again.\n”) ;

}

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 102

Good Programming Practice

• Always place braces around the body of
an if statement.

• Advantages:
– Easier to read
– Will not forget to add the braces if you go

back and add a second statement to the body
– Less likely to make a semantic error

• Indent the body of the if statement 3 to 5
spaces -- be consistent!

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 103

Selection: the if-else statement

 if (condition)
 {
 statement(s) /* the if clause */
 }
 else
 {
 statement(s) /* the else clause */
 }

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 104

Example

if (age >= 18)

{

printf(“Vote!\n”) ;

}

else

{

printf(“Maybe next time!\n”) ;

}

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 105

Example

 if (value == 0)
 {
 printf (“The value you entered was zero.\n”) ;
 printf(“Please try again.\n”) ;
 }
 else
 {
 printf (“Value = %d.\n”, value) ;
 }

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 106

Good Programming Practice
• Always place braces around the bodies of

the if and else clauses of an if-else
statement.

• Advantages:
– Easier to read
– Will not forget to add the braces if you go back

and add a second statement to the clause
– Less likely to make a semantic error

• Indent the bodies of the if and else clauses
3 to 5 spaces -- be consistent!

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 107

The Conditional Operator

expr1 ? expr2 : expr3

If expr1 is true then expr2 is executed, else expr3 is evaluated,
i.e.:

x = ((y < z) ? y : z);

OR

(y < z) ? printf(“%d is smaller”,y): printf(“%d is smaller”,y);

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 108

Nesting of if-else Statements
 if (condition1)
 {
 statement(s)
 }
 else if (condition2)
 {
 statement(s)
 }
 . . . /* more else clauses may be here */
 else
 {
 statement(s) /* the default case */
 }

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 109

Example
 if (value == 0)
 {
 printf (“The value you entered was zero.\n”) ;
 }
 else if (value < 0)
 {
 printf (“%d is negative.\n”, value) ;
 }
 else
 {
 printf (“%d is positive.\n”, value) ;
 }

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 110

Gotcha! = versus ==
int a = 2 ;

if (a = 1) /* semantic (logic) error! */
{

printf (“a is one\n”) ;
}
else if (a == 2)
{

printf (“a is two\n”) ;
}
else
{

printf (“a is %d\n”, a) ;
}

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 111

Gotcha (con’t)

• The statement if (a = 1) is syntactically correct,
so no error message will be produced. (Some
compilers will produce a warning.) However, a
semantic (logic) error will occur.

• An assignment expression has a value -- the
value being assigned. In this case the value
being assigned is 1, which is true.

• If the value being assigned was 0, then the
expression would evaluate to 0, which is false.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 112

Logical Operators
• So far we have seen only simple conditions.

if (count > 10) . . .

• Sometimes we need to test multiple conditions in
order to make a decision.

• Logical operators are used for combining simple
conditions to make complex conditions.

&& is AND if (x > 5 && y < 6)

|| is OR if (z == 0 || x > 10)

! is NOT if (! (bob > 42))

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 113

Example Use of &&

if (age < 1 && gender == ‘m’)
{

printf (“Infant boy\n”) ;
}

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 114

Truth Table for &&

Expression1 Expression2 Expression1 && Expression2

0 0 0

0 nonzero 0

nonzero 0 0

nonzero nonzero 1

Exp1 && Exp2 && … && Expn will evaluate to 1 (true)
only if ALL subconditions are true.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 115

Example Use of ||

if (grade == ‘D’ || grade == ‘F’)
{

printf (“See with your Juniors !\n”) ;
}

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 116

Truth Table for ||

Expression1 Expression2 Expression1 || Expression2

0 0 0

0 nonzero 1

nonzero 0 1

nonzero nonzero 1

Exp1 && Exp2 && … && Expn will evaluate to 1
(true) if only ONE subcondition is true.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 117

Example Use of !

if (! (x == 2)) /* same as (x != 2) */

{

printf(“x is not equal to 2.\n”) ;

}

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 118

Truth Table for !

Expression ! Expression

0 1

nonzero 0

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 119

Gotcha! && or ||
int a = 0 ;
int b=1;
if ((a++ == 1) && (b++==1)) /* semantic (logic) error! */
{

printf (“First Gotcha\n”) ;
}
else if ((a++ == 0) || (b++==1))
{

printf (“Second Gotcha\n”) ;
}
else
{

printf (“a is %d\n”, a) ;
}

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 120

Gotcha (con’t)

• While evaluating a condition if first subpart of a
Complex condition having && operator is false
than the remaining subpart will not be evaluated.

• Similarly While evaluating a condition if first
subpart of a Complex condition having || operator
is true than the remaining subpart will not be
evaluated.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 121

Some Practice Expressions
int a = 1, b = 0, c = 7;

Expression Numeric Value True/False
a
b
c
a + b
a && b
a || b
!c
!!c
a && !b
a < b && b < c
a > b && b < c
a >= b || b > c

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 122

More Practice

Given
int a = 5, b = 7, c = 17 ;

evaluate each expression as True or False.

1. c / b == 2
2. c % b <= a % b
3. b + c / a != c - a
4. (b < c) && (c == 7)
5. (c + 1 - b == 0) || (b = 5)

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 123

Review: Repetition Structure

• A repetition structure allows the programmer
to specify that an action is to be repeated while
some condition remains true.

• There are three repetition structures in C, the
while loop, the for loop, and the do-while loop.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 124

The while Repetition Structure
while (condition)
{

statement(s)
}

The braces are not required if the loop body
contains only a single statement. However, they
are a good idea and are required by the 104 C
Coding Standards.

125

Parts of a While Loop

• Every while loop will always contain
three main elements:
– Priming: initialize your variables.
– Testing: test against some known condition.
– Updating: update the variable that is tested.

126

Simple While Loop

#include <stdio.h>

#define MAX 10

main ()

{

int index =1;

while (index <= MAX) {

printf ("Index: %d\n", index);

index = index + 1;

}

}

OUTPUT:

Index: 1

Index: 2

Index: 3

Index: 4

Index: 5

Index: 6

Index: 7

Index: 8

Index: 9

Index: 10

1. Priming1. Priming

2. Test Condition2. Test Condition

3. Update3. Update

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 127

Example

 while (children > 0)
 {
 children = children - 1 ;
 cookies = cookies * 2 ;
 }

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 128

Good Programming Practice

• Always place braces around the body of a
while loop.

• Advantages:
– Easier to read
– Will not forget to add the braces if you go

back and add a second statement to the loop
body

– Less likely to make a semantic error
• Indent the body of a while loop 3 to 5

spaces -- be consistent!

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 129

Another while Loop Example

• Problem: Write a program that calculates
the average exam grade for a class of 10
students.

• What are the program inputs?
– the exam grades

• What are the program outputs?
– the average exam grade

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 130

The Pseudocode
 <total> = 0
 <grade_counter> = 1

 While (<grade_counter> <= 10)
 Display “Enter a grade: ”

Read <grade>
 <total> = <total> + <grade>
 <grade_counter> = <grade_counter> + 1
 End_while
 <average> = <total> / 10
 Display “Class average is: “, <average>

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 131

 #include <stdio.h>
 int main ()
 {
 int counter, grade, total, average ;
 total = 0 ;
 counter = 1 ;
 while (counter <= 10)
 {
 printf (“Enter a grade : “) ;
 scanf (“%d”, &grade) ;
 total = total + grade ;
 counter = counter + 1 ;
 }
 average = total / 10 ;
 printf (“Class average is: %d\n”, average) ;
 return 0 ;
 }

The C Code

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 132

Versatile?

• How versatile is this program?
• It only works with class sizes of 10.
• We would like it to work with any class size.
• A better way :

– Ask the user how many students are in the
class. Use that number in the condition of the
while loop and when computing the average.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 133

New Pseudocode
<total> = 0
<grade_counter> = 1

Display “Enter the number of students: “
Read <num_students>
While (<grade_counter> <= <num_students>)

Display “Enter a grade: ”
Read <grade>
<total> = <total> + <grade>
<grade_counter> = <grade_counter> + 1

End_while
<average> = <total> / <num_students>
Display “Class average is: “, <average>

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 134

New C Code
 #include <stdio.h>
 int main ()
 {
 int numStudents, counter, grade, total, average ;
 total = 0 ;
 counter = 1 ;
 printf (“Enter the number of students: “) ;
 scanf (“%d”, &numStudents) ;
 while (counter <= numStudents) {
 printf (“Enter a grade : “) ;
 scanf (“%d”, &grade) ;
 total = total + grade ;
 counter = counter + 1 ;
 }
 average = total / numStudents ;
 printf (“Class average is: %d\n”, average) ;
 return 0 ;
 }

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 135

Why Bother to Make It Easier?
• Why do we write programs?

– So the user can perform some task
• The more versatile the program, the more

difficult it is to write. BUT it is more useable.
• The more complex the task, the more difficult

it is to write. But that is often what a user
needs.

• Always consider the user first.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 136

Using a Sentinel Value
• We could let the user keep entering grades

and when he’s done enter some special
value that signals us that he’s done.

• This special signal value is called a
sentinel value.

• We have to make sure that the value we
choose as the sentinel isn’t a legal value.
For example, we can’t use 0 as the sentinel
in our example as it is a legal value for an
exam score.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 137

The Priming Read
• When we use a sentinel value to control a

while loop, we have to get the first value
from the user before we encounter the
loop so that it will be tested and the loop
can be entered.

• This is known as a priming read.
• We have to give significant thought to the

initialization of variables, the sentinel
value, and getting into the loop.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 138

New Pseudocode
<total> = 0
<grade_counter> = 1

Display “Enter a grade: “
Read <grade>
While (<grade> != -1)

<total> = <total> + <grade>
<grade_counter> = <grade_counter> + 1
Display “Enter another grade: ”
Read <grade>

End_while
<average> = <total> / <grade_counter>
Display “Class average is: “, <average>

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 139

New C Code
#include <stdio.h>
int main ()
{

int counter, grade, total, average ;

total = 0 ;
counter = 1 ;
printf(“Enter a grade: “) ;
scanf(“%d”, &grade) ;
while (grade != -1) {

total = total + grade ;
counter = counter + 1 ;
printf(“Enter another grade: “) ;
scanf(“%d”, &grade) ;

}
average = total / counter ;
printf (“Class average is: %d\n”, average) ;
return 0 ;

}

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 140

Final “Clean” C Code
#include <stdio.h>
int main ()
{

int counter ; /* counts number of grades entered */
int grade ; /* individual grade */
int total; /* total of all grades */
int average ; /* average grade */

/* Initializations */

total = 0 ;
counter = 1 ;

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 141

Final “Clean” C Code (con’t)
/* Get grades from user */
/* Compute grade total and number of grades */

printf(“Enter a grade: “) ;
scanf(“%d”, &grade) ;
while (grade != -1) {

total = total + grade ;
counter = counter + 1 ;
printf(“Enter another grade: “) ;
scanf(“%d”, &grade) ;

}

/* Compute and display the average grade */

average = total / counter ;
printf (“Class average is: %d\n”, average) ;

return 0 ;
}

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 142

Using a while Loop to Check
User Input

 #include <stdio.h>
 int main ()
 {
 int number ;
 printf (“Enter a positive integer : “) ;
 scanf (“%d”, &number) ;
 while (number <= 0)
 {
 printf (“\nThat’s incorrect. Try again.\n”) ;
 printf (“Enter a positive integer: “) ;
 scanf (“%d”, &number) ;
 }
 printf (“You entered: %d\n”, number) ;
 return 0 ;
 }

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 143

Counter-Controlled Repetition
(Definite Repetition)

• If it is known in advance exactly how many
times a loop will execute, it is known as a
counter-controlled loop.

int i = 1 ;
while (i <= 10)
{

printf(“i = %d\n”, i) ;
i = i + 1 ;

}

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 144

Counter-Controlled Repetition
(con’t)

• Is the following loop a counter-controlled
loop?

while (x != y)

{

printf(“x = %d”, x) ;

x = x + 2 ;

}

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 145

Event-Controlled Repetition
(Indefinite Repetition)

• If it is NOT known in advance exactly how
many times a loop will execute, it is known
as an event-controlled loop.
sum = 0 ;
printf(“Enter an integer value: “) ;
scanf(“%d”, &value) ;
while (value != -1) {

sum = sum + value ;
printf(“Enter another value: “) ;
scanf(“%d”, &value) ;

}

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 146

Event-Controlled Repetition
(con’t)

• An event-controlled loop will terminate
when some event occurs.

• The event may be the occurrence of a
sentinel value, as in the previous example.

• There are other types of events that may
occur, such as reaching the end of a data
file.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 147

#include <stdio.h>
int main ()
{

int i = 1 ; initialization of loop control variable

/* count from 1 to 100 */
while (i < 101) test of loop termination condition
{

printf (“%d “, i) ;
i = i + 1 ; modification of loop control

} variable
return 0 ;

}

The 3 Parts of a Loop

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 148

The for Loop Repetition
Structure

• The for loop handles details of the counter-controlled
loop “automatically”.

• The initialization of the the loop control variable, the
termination condition test, and control variable
modification are handled in the for loop structure.

for (i = 1; i < 101; i = i + 1)
{
initialization modification
} test

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 149

When Does a for Loop Initialize, Test
and Modify?

• Just as with a while loop, a for loop
– initializes the loop control variable before

beginning the first loop iteration,
– modifies the loop control variable at the very

end of each iteration of the loop, and
– performs the loop termination test before each

iteration of the loop.
• The for loop is easier to write and read for

counter-controlled loops.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 150

A for Loop That Counts From 0
to 9

for (i = 0; i < 10; i = i + 1)
{

printf (“%d\n”, i) ;
}

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 151

We Can Count Backwards, Too

for (i = 9; i >= 0; i = i - 1)
{

printf (“%d\n”, i) ;
}

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 152

We Can Count By 2’s ... or 7’s
… or Whatever

for (i = 0; i < 10; i = i + 2)
{

printf (“%d\n”, i) ;
}

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 153

The do-while Repetition
Structure

do
{

statement(s)
} while (condition) ;

• The body of a do-while is ALWAYS
executed at least once. Is this true of a
while loop? What about a for loop?

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 154

Example

do
{

printf (“Enter a positive number: “) ;
scanf (“%d”, &num) ;
if (num <= 0)
{

printf (“\nThat is not positive. Try again\n”) ;
}

} while (num <= 0) ;

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 155

An Equivalent while Loop
printf (“Enter a positive number: “) ;
scanf (“%d”, &num) ;
while (num <= 0)
{

printf (“\nThat is not positive. Try again\n”) ;
printf (“Enter a positive number: “) ;
scanf (“%d”, &num) ;

}

• Notice that using a while loop in this case
requires a priming read.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 156

An Equivalent for Loop
printf (“Enter a positive number: “) ;
scanf (“%d”, &num) ;

for (; num <= 0;)

{
printf (“\nThat is not positive. Try again\n”) ;
printf (“Enter a positive number: “) ;
scanf (“%d”, &num) ;

}

• A for loop is a very awkward choice here because
the loop is event-controlled.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 157

So, Which Type of Loop Should I
Use?

• Use a for loop for counter-controlled
repetition.

• Use a while or do-while loop for event-
controlled repetition.
– Use a do-while loop when the loop must

execute at least one time.
– Use a while loop when it is possible that the

loop may never execute.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 158

Infinite Loop

• Infinite Loop: A loop that never ends.
– Generally, you want to avoid these!
– There are special cases, however, when

you do want to create infinite loops on
purpose.

• Common Exam Questions:
– Given a piece of code, identify the bug in

the code.
– You may need to identify infinite loops.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 159

Infinite Loop Example #1
#include <stdio.h>
#define MAX 10
main ()
{

int index =1;
while (index <= MAX)
{

printf ("Index: %d\n", index);
}

}

Index: 1

Index: 1

Index: 1

Index: 1

Index: 1

…
[forever]

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 160

Infinite Loop, Example #2

#include <stdio.h>
/*no MAX here*/
main ()
{

int index = 1;
while (index > 0)
{

printf ("Index: %d\n", index);
index = index + 1;

}
}

Index: 1

Index: 2

Index: 3

Index: 4

Index: 5

… [forever] ?

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 161

Nested Loops

• Loops may be nested (embedded) inside
of each other.

• Actually, any control structure (sequence,
selection, or repetition) may be nested
inside of any other control structure.

• It is common to see nested for loops.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 162

Nested for Loops
for (i = 1; i < 5; i = i + 1)
{

for (j = 1; j < 3; j = j + 1)
{

if (j % 2 == 0)
{

printf (“O”) ;
}
else
{

printf (“X”) ;
}

}
printf (“\n”) ;

}

How many times is the “if”
statement executed?

What is the output ?

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 163

The break Statement

• The break statement can be used in
while, do-while, and for loops to
cause premature exit of the loop.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 164

Example break in a for Loop
#include <stdio.h>
int main ()
{

int i ;
for (i = 1; i < 10; i = i + 1)
{

if (i == 5)
{

break ;
}
printf (“%d “, i) ;

}
printf (“\nBroke out of loop at i = %d.\n”, i) ;
return 0 ;

}

OUTPUT:

1 2 3 4

Broke out of loop at i = 5.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 165

The continue Statement

• The continue statement can be used
in while, do-while, and for loops.

• It causes the remaining statements in
the body of the loop to be skipped for
the current iteration of the loop.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 166

Example continue in a for Loop
#include <stdio.h>
int main ()
{

int i ;
for (i = 1; i < 10; i = i + 1)
{

if (i == 5)
{

continue ;
}
printf (“%d ”, i) ;

}
printf (“\nDone.\n”) ;
return 0 ;

}

OUTPUT:

1 2 3 4 6 7 8 9

Done.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 167

Debugging Tips

• Trace your code by hand (a hand trace),
keeping track of the value of each
variable.

• Insert temporary printf() statements so you
can see what your program is doing.
– Confirm that the correct value(s) has been

read in.
– Check the results of arithmetic computations

immediately after they are performed.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 168

Multiple Selection

• So far, we have only seen binary
selection.

if (age >= 18)

{

printf(“Vote!\n”) ;

}

if (age >= 18)

{

printf(“Vote!\n”) ;

}

else

{

printf(“Maybe next time!\n”) ;

}

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 169

Multiple Selection (con’t)

• Sometimes it is necessary to branch in
more than two directions.

• We do this via multiple selection.
• The multiple selection mechanism in C is

the switch statement.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 170

Multiple Selection with if
if (day == 0) {

printf (“Sunday”) ;
}
if (day == 1) {

printf (“Monday”) ;
}
if (day == 2) {

printf (“Tuesday”) ;
}
if (day == 3) {

printf (“Wednesday”) ;
}

if (day == 4) {
printf (“Thursday”) ;

}
if (day == 5) {

printf (“Friday”) ;
}
if (day == 6) {

printf (“Saturday”) ;
}
if ((day < 0) || (day > 6)) {

printf(“Error - invalid day.\n”) ;
}

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 171

Multiple Selection with if-else
if (day == 0) {

printf (“Sunday”) ;
} else if (day == 1) {

printf (“Monday”) ;
} else if (day == 2) {

printf (“Tuesday”) ;
} else if (day == 3) {

printf (“Wednesday”) ;
} else if (day == 4) {

printf (“Thursday”) ;
} else if (day == 5) {

printf (“Friday”) ;
} else if (day = 6) {

printf (“Saturday”) ;
} else {

printf (“Error - invalid day.\n”) ;
}

This if-else structure is more
efficient than the corresponding
if structure. Why?

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 172

The switch Multiple-Selection
Structure

switch (integer expression)
{

case constant1 :
statement(s)
break ;

case constant2 :
statement(s)
break ;

. . .
default:

statement(s)
break ;

}

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 173

switch Statement Details
• The last statement of each case in the

switch should almost always be a break.
• The break causes program control to jump

to the closing brace of the switch structure.
• Switch statement can only test for equality

condition (==).
• A switch statement will compile without a

default case, but always consider using one.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 174

Good Programming Practices

• Include a default case to catch invalid
data.

• Inform the user of the type of error that
has occurred (e.g., “Error - invalid day.”).

• If appropriate, display the invalid value.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 175

switch Example
switch (day)
{

case 0: printf (“Sunday\n”) ;
break ;

case 1: printf (“Monday\n”) ;
break ;

case 2: printf (“Tuesday\n”) ;
break ;

case 3: printf (“Wednesday\n”) ;
break ;

case 4: printf (“Thursday\n”) ;
break ;

case 5: printf (“Friday\n”) ;
break ;

case 6: printf (“Saturday\n”) ;
break ;

default: printf (“Error -- invalid day.\n”) ;
break ;

}

Is this structure more
efficient than the
equivalent nested if-else
structure?

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 176

Why Use a switch Statement?

• A nested if-else structure is just as efficient
as a switch statement.

• However, a switch statement may be
easier to read.

• Also, it is easier to add new cases to a
switch statement than to a nested if-else
structure.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 177

The char Data Type
• The char data type holds a single character.

char ch;
• Example assignments:

char grade, symbol;

grade = ‘B’;
symbol = ‘$’;

• The char is held as a one-byte integer in memory.
The ASCII code is what is actually stored, so we
can use them as characters or integers,
depending on our need.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 178

The char Data Type (con’t)

• Use
scanf (“%c”, &ch) ;

to read a single character into the variable ch.
(Note that the variable does not have to be called
“ch”.”)

• Use
printf(“%c”, ch) ;

to display the value of a character variable.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 179

char Example
#include <stdio.h>
int main ()
{

char ch ;

printf (“Enter a character: “) ;
scanf (“%c”, &ch) ;
printf (“The value of %c is %d.\n”, ch, ch) ;
return 0 ;

}

If the user entered an A, the output would be:

The value of A is 65.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 180

The getchar () Function
• The getchar() function is found in the stdio

library.
• The getchar() function reads one character

from stdin (the standard input buffer) and
returns that character’s ASCII value.

• The value can be stored in either a character
variable or an integer variable.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 181

getchar () Example
#include <stdio.h>
int main ()
{

char ch ; /* int ch would also work! */

printf (“Enter a character: “) ;
ch = getchar() ;
printf (“The value of %c is %d.\n”, ch, ch) ;
return 0 ;

}

If the user entered an A, the output would be:

The value of A is 65.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 182

Problems with Reading Characters
• When getting characters, whether using scanf() or

getchar(), realize that you are reading only one
character.

• What will the user actually type? The character
he/she wants to enter, followed by pressing ENTER.

• So, the user is actually entering two characters,
his/her response and the newline character.

• Unless you handle this, the newline character will
remain in the stdin stream causing problems the next
time you want to read a character. Another call to
scanf() or getchar() will remove it.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 183

Improved getchar() Example
#include <stdio.h>
int main ()
{

char ch, newline ;

printf (“Enter a character: “) ;
ch = getchar() ;
newline = getchar() ; /* could also use scanf(“%c”, &newline) ; */
printf (“The value of %c is %d.\n”, ch, ch) ;
return 0 ;

}

If the user entered an A, the output would be:

The value of A is 65.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 184

Additional Concerns with Garbage in
stdin

• When we were reading integers using scanf(), we
didn’t seem to have problems with the newline
character, even though the user was typing ENTER
after the integer.

• That is because scanf() was looking for the next
integer and ignored the newline (whitespace).

• If we use scanf (“%d”, &num); to get an integer, the
newline is still stuck in the input stream.

• If the next item we want to get is a character, whether
we use scanf() or getchar(), we will get the newline.

• We have to take this into account and remove it.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 185

EOF Predefined Constant

• getchar() is usually used to get characters from
a file until the end of the file is reached.

• The value used to indicate the end of file varies
from system to system. It is system
dependent.

• But, regardless of the system you are using,
there is a #define in the stdio library for a
symbolic integer constant called EOF.

• EOF holds the value of the end-of-file marker for
the system that you are using.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 186

getchar() Example Using EOF
#include <stdio.h>
int main ()
{

int grade, aCount, bCount, cCount, dCount, fCount ;
aCount = bCount = cCount = dCount = fCount = 0 ;
while ((grade = getchar()) != EOF) {

switch (grade) {
case ‘A’: aCount++; break ;
case ‘B’: bCount++; break ;
case ‘C’ : cCount++; break ;
case ‘D’: dCount++; break ;
case ‘F’: fCount++; break ;
default : break ;

}
}
return 0 ;

}

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 187

Incremental Programming
Review

• Write your code in incomplete but working pieces.
• For example, for your projects,

– Don’t write the whole program at once.
– Just write enough to display the user prompt on

the screen.
– Get that part working first (compile and run).
– Next, write the part that gets the value from the

user, and then just print it out.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 188

Increment Programming Review
(con’t)

– Get that working (compile and run).
– Next, change the code so that you use the

value in a calculation and print out the
answer.

– Get that working (compile and run).
– Continue this process until you have the final

version.
– Get the final version working.

• Bottom line: Always have a working
version of your program!

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 189

Example of Incremental
Programming

Problem:
• Write an interactive program that allows the

user to calculate the interest accrued on a
savings account. The interest is compounded
annually.

• The user must supply the principal amount,
the interest rate, and the number of years
over which to compute the interest.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 190

Rough Algorithm
Print explanation of the program
Get <principal> from user
Get <interest rate> from user
Get <number of years> from user
<amount> = <principal>
While (<number of years> > 0)

amount = amount + (amount X <interest rate>)
<number of years> = <number of year> + 1

End_while
<interest accrued> = <amount> - <principal>
Display report

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 191

Report Design

 Interest rate : 7.0000 %
 Period : 20 years

 Principal at start of period : 1000.00
 Interest accrued : 2869.68

Total amount at end of period : 3869.68

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 192

Version #1
/* Filename: interest.c
* Author: Hemant Mehta
* Date written: 11/14//06
* Description: This program computes the interest accrued in an account
* that compounds interest annually. */
#include <stdio.h>
int main ()
{

/* Print Instructions */
printf (“This program computes the interest accrued in an account that\n”);
printf (“compounds interest annually. You will need to enter the amount\n”);
printf (“of the principal, the interest rate and the number of years.\n\n”);

return 0;

}

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 193

Output #1

This program computes the interest accrued in an account that
compounds interest annually. You will need to enter the amount
of the principal, the interest rate and the number of years.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 194

Version #2
/* Filename: interest.c
* Author: ___________
* Date written: 11/14//99
* Description: This program computes the interest accrued in an account
* that compounds interest annually. */
#include <stdio.h>
int main ()
{

float principal, rate ;
int years ;
/* Print Instructions */
printf (“This program computes the interest accrued in an account that\n”) ;
printf (“compounds interest annually. You will need to enter the amount\n”) ;
printf (“of the principal, the interest rate and the number of years.\n\n”) ;
/* Get input from user */
printf (“Enter the principal amount : “) ;
scanf (“%f”, &principal) ;
printf (“Enter the interest rate as a decimal (for 7%% enter .07) : “) ;
scanf (“%f”, &rate) ;
printf (“Enter the number of years : “) ;
scanf (“%d”, &years) ;
printf (“\nprincipal = %f, rate = %f, years = %d\n”, principal, rate, years) ;
return 0 ;

}

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 195

Output #2

 This program computes the interest accrued in an account that
 compounds interest annually. You will need to enter the amount
 of the principal, the interest rate and the number of years.

 Enter the principal amount : 1000.00
 Enter the interest rate as a decimal (for 7% enter .07) : .07
 Enter the number of years : 20

 principal = 1000.000000, rate = 0.070000, years = 20

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 196

Version #3
/* Filename: interest.c
* Author: ____________
* Date written: 11/14//99
* Description: This program computes the interest accrued in an account
* that compounds interest annually. */
#include <stdio.h>
int main ()
{

float principal, rate, amount, interest ;
int years, i ;

/* Print Instructions */
printf (“This program computes the interest accrued in an account that\n”);
printf (“compounds interest annually. You will need to enter the amount\n”);
printf (“of the principal, the interest rate and the number of years.\n\n”);

/* Get input from user */
printf (“Enter the principal amount : “);
scanf (“%f”, &principal);
printf (“Enter the interest rate as a decimal (for 7%% enter .07) : “) ;
scanf (“%f”, &rate);
printf (“Enter the number of years : “);
scanf (“%d”, &years);

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 197

Version #3 (con’t)

/* Save the original principal amount by varying another variable, amount */
amount = principal;
/* Calculate total amount in the account after the specified number of years */
for (i = 0 ; i < 1 ; i++)
{

amount += amount * rate ;
}
/* Calculate accrued interest */
interest = amount - principal ;

printf (“\nprincipal = %f, rate = %f, years = %d\n”, principal, rate, years) ;
printf (“amount = %f, interest = %f\n”);

return 0 ;

}

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 198

Output #3

 This program computes the interest accrued in an account that
 compounds interest annually. You will need to enter the amount
 of the principal, the interest rate and the number of years.

 Enter the principal amount : 1000.00
 Enter the interest rate as a decimal (for 7% enter .07) : .07
 Enter the number of years : 20

 principal = 1000.000000, rate = 0.070000, years = 20
 amount = 1070.000000, interest = 70.000000

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 199

Version #4
/* Filename: interest.c
* Author: ____________
* Date written: 11/14//99
* Description: This program computes the interest accrued in an account
* that compounds interest annually. */
#include <stdio.h>
int main ()
{

float principal, rate, amount, interest ;
int years, i ;

/* Print Instructions */
printf (“This program computes the interest accrued in an account that\n”);
printf (“compounds interest annually. You will need to enter the amount\n”);
printf (“of the principal, the interest rate and the number of years.\n\n”);

/* Get input from user */
printf (“Enter the principal amount : “);
scanf (“%f”, &principal);
printf (“Enter the interest rate as a decimal (for 7%% enter .07) : “) ;
scanf (“%f”, &rate);
printf (“Enter the number of years : “);
scanf (“%d”, &years);

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 200

Version #4 (con’t)

/* Save the original principal amount by varying another variable, amount */
amount = principal;

/* Calculate total amount in the account after the specified number of years */
for (i = 0 ; i < 2 ; i++)
{

amount += amount * rate ;
}

/* Calculate accrued interest */
interest = amount - principal ;

printf (“\nprincipal = %f, rate = %f, years = %d\n”, principal, rate, years) ;
printf (“amount = %f, interest = %f\n”);

return 0 ;

}

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 201

Output #4

 This program computes the interest accrued in an account that
 compounds interest annually. You will need to enter the amount
 of the principal, the interest rate and the number of years.

 Enter the principal amount : 1000.00
 Enter the interest rate as a decimal (for 7% enter .07) : .07
 Enter the number of years : 20

 principal = 1000.000000, rate = 0.070000, years = 20
 amount = 1144.900000, interest = 144.900000

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 202

Version #5
/* Filename: interest.c
* Author: ____________
* Date written: 11/14//99
* Description: This program computes the interest accrued in an account
* that compounds interest annually. */
#include <stdio.h>
int main ()
{

float principal, rate, amount, interest ;
int years, i ;

/* Print Instructions */
printf (“This program computes the interest accrued in an account that\n”);
printf (“compounds interest annually. You will need to enter the amount\n”);
printf (“of the principal, the interest rate and the number of years.\n\n”);

/* Get input from user */
printf (“Enter the principal amount : “);
scanf (“%f”, &principal);
printf (“Enter the interest rate as a decimal (for 7%% enter .07) : “) ;
scanf (“%f”, &rate);
printf (“Enter the number of years : “);
scanf (“%d”, &years);

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 203

Version #5 (con’t)

/* Save the original principal amount by varying another variable, amount */
amount = principal;

/* Calculate total amount in the account after the specified number of years */
for (i = 0 ; i < years ; i++)
{

amount += amount * rate ;
}

/* Calculate accrued interest */
interest = amount - principal ;

printf (“\nprincipal = %f, rate = %f, years = %d\n”, principal, rate, years) ;
printf (“amount = %f, interest = %f\n”);

return 0 ;

}

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 204

Output #5

 This program computes the interest accrued in an account that
 compounds interest annually. You will need to enter the amount
 of the principal, the interest rate and the number of years.

 Enter the principal amount : 1000.00
 Enter the interest rate as a decimal (for 7% enter .07) : .07
 Enter the number of years : 20

 principal = 1000.000000, rate = 0.070000, years = 20
 amount = 3869.680000, interest = 2869.680000

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 205

Final Version
/* Filename: interest.c
* Author: ____________
* Date written: 11/14//99
* Description: This program computes the interest accrued in an account
* that compounds interest annually. */
#include <stdio.h>
int main ()
{

float principal, rate, amount, interest ;
int years, i ;

/* Print Instructions */
printf (“This program computes the interest accrued in an account that\n”);
printf (“compounds interest annually. You will need to enter the amount\n”);
printf (“of the principal, the interest rate and the number of years.\n\n”);

/* Get input from user */
printf (“Enter the principal amount : “);
scanf (“%f”, &principal);
printf (“Enter the interest rate as a decimal (for 7%% enter .07) : “) ;
scanf (“%f”, &rate);
printf (“Enter the number of years : “);
scanf (“%d”, &years);

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 206

Final Version (con’t)

/* Save the original principal amount by varying another variable, amount */
amount = principal;

/* Calculate total amount in the account after the specified number of years */
for (i = 0 ; i < years ; i++)
{

amount += amount * rate ;
}

/* Calculate accrued interest */
interest = amount - principal ;

/* Print report */
printf (“Interest rate : %.4f %%\n”, 100 * rate) ;
printf (“ Period : %d years\n\n”, years) ;
printf (“ Principal at start of period : %9.2f”, principal);
printf (“ Interest accrued : %9.2f”, interest);
printf (“Total amount at end of period : %9.2f”, amount);

return 0 ;

}

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 207

Final Output
 This program computes the interest accrued in an account that
 compounds interest annually. You will need to enter the amount
 of the principal, the interest rate and the number of years.

 Enter the principal amount : 1000.00
 Enter the interest rate as a decimal (for 7% enter .07) : .07
 Enter the number of years : 20

 Interest rate : 7.0000 %
 Period : 20 years

 Principal at start of period : 1000.00
 Interest accrued : 2869.68
 Total amount at end of period : 3869.68

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 208

Top-Down Design
• If we look at a problem as a whole, it may seem

impossible to solve because it is so complex.
Examples:
– writing a tax computation program
– writing a word processor

• Complex problems can be solved using top-
down design, also known as stepwise
refinement, where
– We break the problem into parts
– Then break the parts into parts
– Soon, each of the parts will be easy to do

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 209

Advantages of Top-Down
Design

• Breaking the problem into parts helps us to
clarify what needs to be done.

• At each step of refinement, the new parts
become less complicated and, therefore,
easier to figure out.

• Parts of the solution may turn out to be
reusable.

• Breaking the problem into parts allows more
than one person to work on the solution.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 210

An Example of Top-Down
Design

• Problem:
– We own a home improvement company.
– We do painting, roofing, and basement

waterproofing.
– A section of town has recently flooded

(zip code 21222).
– We want to send out pamphlets to our

customers in that area.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 211

The Top Level
• Get the customer list from a file.
• Sort the list according to zip code.
• Make a new file of only the customers with the zip

code 21222 from the sorted customer list.
• Print an envelope for each of these customers.

Main

Sort Select PrintRead

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 212

Another Level?
• Should any of these steps be broken down

further? Possibly.
• How do I know? Ask yourself whether or

not you could easily write the algorithm for
the step. If not, break it down again.

• When you are comfortable with the
breakdown, write the pseudocode for each
of the steps (modules) in the hierarchy.

• Typically, each module will be coded as a
separate function.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 213

Structured Programs

• We will use top-down design for all remaining
programming projects.

• This is the standard way of writing programs.
• Programs produced using this method and using

only the three kinds of control structures,
sequential, selection and repetition, are called
structured programs.

• Structured programs are easier to test, modify,
and are also easier for other programmers to
understand.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 214

Another Example

• Problem: Write a program that draws this
picture of a house.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 215

The Top Level

• Draw the outline of the house
• Draw the chimney
• Draw the door
• Draw the windows

Main

Draw
Chimney

Draw
Door

Draw
Windows

Draw
Outline

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 216

Pseudocode for Main

Call Draw Outline
Call Draw Chimney
Call Draw Door
Call Draw Windows

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 217

Observation
• The door has both a frame and knob. We

could break this into two steps.
Main

Draw
Chimney

Draw
Door

Draw
Windows

Draw
Outline

Draw
Door Frame

Draw
Knob

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 218

Pseudocode for Draw Door

Call Draw Door Frame
Call Draw Knob

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 219

Another Observation

• There are three windows to be drawn.

Main

Draw
Windows

Draw
Outline . . .

Draw
Window 3

Draw
Window 2

Draw
Window 1

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 220

One Last Observation
• But don’t the windows look the same?

They just have different locations.
• So, we can reuse the code that draws a

window.
– Simply copy the code three times and edit it to

place the window in the correct location, or
– Use the code three times, “sending it” the

correct location each time (we will see how to
do this later).

• This is an example of code reuse.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 221

Reusing the Window Code

Main

Draw
Windows

Draw
Outline . . .

Draw a
Window

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 222

Pseudocode for Draw Windows

Call Draw a Window, sending in Location 1
Call Draw a Window, sending in Location 2
Call Draw a Window, sending in Location 3

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 223

Review of Structured
Programming

• Structured programming is a problem solving
strategy and a programming methodology that
includes the following guidelines:
– The program uses only the sequence,

selection, and repetition control structures.
– The flow of control in the program should be

as simple as possible.
– The construction of a program embodies top-

down design.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 224

Review of Top-Down Design

• Involves repeatedly decomposing a
problem into smaller problems

• Eventually leads to a collection of small
problems or tasks each of which can be
easily coded

• The function construct in C is used to
write code for these small, simple
problems.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 225

Functions
• A C program is made up of one or more functions,

one of which is main().
• Execution always begins with main(), no matter

where it is placed in the program. By convention,
main() is located before all other functions.

• When program control encounters a function
name, the function is called (invoked).
– Program control passes to the function.
– The function is executed.
– Control is passed back to the calling function.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 226

#include <stdio.h>

int main () printf is the name of a predefined
{ function in the stdio library

printf (“Hello World!\n”) ; this statement is
return 0 ; is known as a

} function call
this is a string we are passing
as an argument (parameter) to
the printf function

Sample Function Call

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 227

Functions (con’t)
• We have used few predefined functions such

as:
– printf
– scanf
– getchar

• Programmers can write their own functions.
• Typically, each module in a program’s design

hierarchy chart is implemented as a function.
• C function names follow the same naming rules

as C variables.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 228

Sample Programmer-Defined
Function

#include <stdio.h>

void printMessage (void) ;

int main ()
{

printMessage () ;
return 0 ;

}

void printMessage (void)
{

printf (“A message for you:\n\n”) ;
printf (“Have a nice day!\n”) ;

}

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 229

Examining printMessage
#include <stdio.h>

void printMessage (void) ; function prototype

int main ()
{

printMessage () ; function call
return 0 ;

}

void printMessage (void) function header
{

printf (“A message for you:\n\n”) ; function
printf (“Have a nice day!\n”) ; body

}

function definition

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 230

The Function Prototype
• Informs the compiler that there will be a function

defined later that:
returns this type

has this name
takes these arguments

void printMessage (void) ;

• Needed because the function call is made before
the definition -- the compiler uses it to see if the
call is made properly

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 231

The Function Call
• Passes program control to the function
• Must match the prototype in name, number of

arguments, and types of arguments

void printMessage (void) ;

int main () same name no arguments
{

printMessage () ;
return 0 ;

}

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 232

The Function Definition
• Control is passed to the function by the function

call. The statements within the function body will
then be executed.
void printMessage (void)
{

printf (“A message for you:\n\n”) ;
printf (“Have a nice day!\n”) ;

}

• After the statements in the function have
completed, control is passed back to the calling
function, in this case main() . Note that the
calling function does not have to be main() .

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 233

General Function Definition
Syntax

type functionName (parameter1, . . . , parametern)
{

variable declaration(s)
statement(s)

}
If there are no parameters, either

functionName() OR functionName(void)
is acceptable.

• There may be no variable declarations.
• If the function type (return type) is void, a return

statement is not required, but the following are permitted:
return ; OR return() ;

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 234

Using Input Parameters
void printMessage (int counter) ;
int main ()
{

int num;
printf (“Enter an integer: “) ;
scanf (“%d”, &num) ;
printMessage (num) ; one argument matches the one formal parameter
return 0 ; of type int of type int

}

void printMessage (int counter)
{

int i ;
for (i = 0; i < counter; i++)
{

printf (“Have a nice day!\n”) ;
}

}

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 235

Final “Clean” C Code
#include <stdio.h>

void printMessage (int counter) ;

int main ()
{

int num ; /* number of times to print message */

printf (“Enter an integer: “) ;
scanf (“%d”, &num) ;
printMessage (num) ;

return 0 ;
}

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 236

Final “Clean” C Code (con’t)
/***
** printMessage - prints a message a specified number of times
** Inputs: counter - the number of times the message will be
** printed
** Outputs: None
/***/
void printMessage (int counter)
{

int i ; /* loop counter */

for (i = 0; i < counter; i++)
{

printf (“Have a nice day!\n”) ;
}

}

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 237

Good Programming Practice
• Notice the function header comment before the

definition of function printMessage.
• Your header comments should be neatly formatted

and contain the following information:
– function name
– function description (what it does)
– a list of any input parameters and their meanings
– a list of any output parameters and their meanings
– a description of any special conditions

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 238

Functions Can Return Values
/**
** averageTwo - calculates and returns the average of two numbers
** Inputs: num1 - an integer value
** num2 - an integer value
** Outputs: the floating point average of num1 and num2
***/
float averageTwo (int num1, int num2)
{

float average ; /* average of the two numbers */

average = (num1 + num2) / 2.0 ;
return average ;

}

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 239

Using averageTwo
#include <stdio.h>
float averageTwo (int num1, int num2) ;
int main ()
{

float ave ;
int value1 = 5, value2 = 8 ;
ave = averageTwo (value1, value2) ;
printf (“The average of %d and %d is %f\n”, value1, value2, ave) ;
return 0 ;

}

float averageTwo (int num1, int num2)
{

float average ;

average = (num1 + num2) / 2.0 ;
return average ;

}

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 240

Parameter Passing
• Actual parameters are the parameters that

appear in the function call.
average = averageTwo (value1, value2) ;

• Formal parameters are the parameters that
appear in the function header.

float averageTwo (int num1, int num2)

• Actual and formal parameters are matched by
position. Each formal parameter receives the
value of its corresponding actual parameter.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 241

Parameter Passing (con’t)

• Corresponding actual and formal
parameters do not have to have the same
name, but they may.

• Corresponding actual and formal
parameters must be of the same data
type, with some exceptions.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 242

Local Variables
• Functions only “see” (have access to) their own

local variables. This includes main() .
• Formal parameters are declarations of local

variables. The values passed are assigned to
those variables.

• Other local variables can be declared within the
function body.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 243

#include <stdio.h> float averageTwo (int num1, int num2)
float averageTwo (int num1, int num2) ; {
int main () float average ;
{

float ave ; average = (num1 + num2) / 2.0 ;
int value1 = 5, value2 = 8 ; return average ;

}
ave = averageTwo (value1, value2) ;
printf (“The average of “) ;
printf (“%d and %d is %f\n”,

value1, value2, ave) ;
return 0 ;

}
value1 value2 ave num1 num2 average

5 8

int int float int int float

Parameter Passing and Local
Variables

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 244

#include <stdio.h> float averageTwo (int num1, int num2)
float averageTwo (int num1, int num2) ; {
int main () float average ;
{

float average ; average = (num1 + num2) / 2.0 ;
int num1 = 5, num2 = 8 ; return average ;

}
average = averageTwo (num1,

num2) ;
printf (“The average of “) ;
printf (“%d and %d is %f\n”,

num1, num2, average) ;
return 0 ;

}
num1 num2 average num1 num2 average

5 8
int int float int int float

Same Name, Still Different Memory
Locations

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 245

Changes to Local Variables Do NOT
Change Other Variables with the

Same Name#include <stdio.h>
void addOne (int number) ; void addOne (int num1)

{
int main () num1++ ;
{ printf (“In addOne: “) ;

int num1 = 5 ; printf (“num1 = %d\n”, num1) ;
addOne (num1) ; }
printf (“In main: “) ;
printf (“num1 = %d\n”, num1) ; num1
return 0 ;

} int
num1

5 OUTPUT
int In addOne: num1 = 6

In main: num1 = 5

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 246

Call by Value and Call by Reference

By Default the function calling is by Value i.e. there is no
relation between actual and formal parameter. Change in
formal parameter doesn't affect actual parameter.

In case if we require the value updated by a function, there
is a provision for single updated value by using return
type of the function. But in case we require more than
one value the we must call the function by reference.

In case of call by reference we use pointers.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 247

Header Files

• Header files contain function prototypes
for all of the functions found in the
specified library.

• They also contain definitions of constants
and data types used in that library.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 248

Commonly Used Header Files
Header File Contains Function Prototypes for:
<stdio.h> standard input/output library functions

and information used by them
<math.h> math library functions
<stdlib.h> conversion of numbers to text, text to

numbers, memory allocation, random
numbers, and other utility functions

<time.h> manipulating the time and date
<ctype.h> functions that test characters for certain

properties and that can convert case
<string.h> functions that manipulate character strings

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 249

Using Header Files
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
int main ()
{

float side1, side2, hypotenuse ;
printf(“Enter the lengths of the right triangle sides: “) ;
scanf(“%f%f”, &side1, &side2) ;
if ((side1 <= 0) || (side2 <= 0) {

exit (1) ;
}
hypotenuse = sqrt ((side1 * side1) + (side2 * side2)) ;
printf(“The hypotenuse = %f\n”, hypotenuse) ;
return 0 ;

}

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 250

User Defined Header Files

Save different functions in a file (extension .h). This file can
be used as header file. e.g. myheader.h

In order to include the this user defined header file we can
• Either put the file in the include folder.
• Or keep it in the current folder an include it with

#include “myheader.h”

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 251

The stack and the heap

• Local variables, function arguments, return value
are stored on a stack

• Each function call generates a new "stack frame"

• After function returns, stack frame disappears

– along with all local variables and function
arguments for that invocation

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 252

The stack and the heap

void contrived_example(int i, float f)

{

int j = 10;

double d = 3.14;

int arr[10];

/* do some stuff, then return */

return (j + i);

}

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 253

The stack and the heap

/* somewhere in code */

int k = contrived_example(42, 3.3);

• What does this look like on the stack?

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 254

The stack and the heap

i = 42

f = 3.3

j = 10

d = 3.14

arr[10] =
<garbage>

stack frame

function
arguments

local
variables

(more frames)

52return value

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 255

The stack and the heap

• Another example:
int factorial(int i)

{

if (i == 0) {

return 1;

} else {

return i * factorial (i - 1);

}

}

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 256

The stack and the heap

• Pop quiz: what goes on the stack for
factorial(3)?

• For each stack frame, have...
– no local variables
– one argument (i)
– one return value

• Each recursive call generates a new stack frame
– which disappears after the call is complete

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 257

The stack and the heap

i = 3
stack framefactorial(3)

return value ?

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 258

The stack and the heap

i = 3
stack framefactorial(3)

return value ?

return value
factorial(2)

i = 2

?
stack frame

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 259

The stack and the heap

i = 3
stack framefactorial(3)

return value ?

return value
factorial(2)

i = 2

?
stack frame

stack framefactorial(1)
return value

i = 1

?

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 260

The stack and the heap

i = 3
stack framefactorial(3)

return value ?

return value
factorial(2)

i = 2

?
stack frame

stack framefactorial(1)
return value

i = 1

?

stack frame
return value

factorial(0)
i = 0

?

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 261

The stack and the heap

i = 3
stack framefactorial(3)

return value ?

return value
factorial(2)

i = 2

?
stack frame

stack framefactorial(1)
return value

i = 1

?

stack frame
return value

factorial(0)
i = 0

1

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 262

The stack and the heap

i = 3
stack framefactorial(3)

return value ?

return value
factorial(2)

i = 2

?
stack frame

stack framefactorial(1)
return value

i = 1

1

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 263

The stack and the heap

i = 3
stack framefactorial(3)

return value ?

return value
factorial(2)

i = 2

2
stack frame

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 264

The stack and the heap

i = 3
stack framefactorial(3)

return value 6

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 265

The stack and the heap

factorial(3)

result: 6

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 266

The stack and the heap

void foo() {

int arr[10]; /* local (on stack) */

/* do something with arr */

} /* arr is deallocated */

• Local variables sometimes called "automatic"
variables; deallocation is automatic

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 267

The stack and the heap

arr[10] =
<whatever>

stack framelocal
variables

foo

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 268

The stack and the heap

• The "heap" is the general pool of computer
memory

• Memory is allocated on the heap using
malloc() or calloc()

• Heap memory must be explicitly freed using
free()

• Failure to do so � memory leak!

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 269

The stack and the heap

void foo2() {

int *arr;

/* allocate memory on the heap: */

arr = (int *)calloc(10, sizeof(int));

/* do something with arr */

} /* arr is NOT deallocated */

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 270

The stack and the heap

void foo3() {

int *arr;

/* allocate memory on the heap: */

arr = (int *)calloc(10, sizeof(int));

/* do something with arr */

free(arr);

}

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 271

The stack and the heap

arr =
0x1234

stack framelocal
variables

0x1234

stack

heap

arr[0]

arr[1]

arr[2]

arr[3]

arr[4]

(etc.)

foo2 and
foo3

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 272

The stack and the heap
0x1234

stack

heap

arr[0]

arr[1]

arr[2]

arr[3]

arr[4]

(etc.)

(after foo2
exits,

without
freeing

memory)

memory
leak

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 273

The stack and the heap

stack

heap

(etc.)

arr[4]

arr[3]

arr[2]

arr[1]

arr[0]0x1234

(after foo3
exits, with

freeing
memory)

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in 274

