Devi Ahilya Vishvavidyalaya

Programming




ke \What is a Computer Program?

A program is a set of step-by-step
Instructions to the computer telling it to
carry out the tasks that you want it to do
to produce the results you want.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




What Is Programming?

 Programming consists of two distinct
steps:

e algorithmic design (the problem solving
stage, analogous to the work of an
architect designing a building)

e coding (the construction phase)

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Levels of Programming
Languages

 Machine language
 Assembly Language
e High Level Languages

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Machine Language

o Actual binary code that gives basic
Instructions to the computer.

 These are usually simple commands
like adding two numbers or moving
data from one memory location to
another.

 Different for each computer processor

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Assembly Language

A way for humans to program computers

directly without memorizing strings of binary
numbers.

 There Is a one-to-one correspondence with
machine code.

— For example ADD and MOV are mnemonics for
addition and move operations that can be specified
In single machine language instructions.

Different for each computer processor

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




High-level language

 Permits humans to write complex
programs without going step-by step.

* High-level languages include Pascal,
FORTRAN, Java, Visual Basic, and
many more.

 One command in a high-level
language may translate to tens of
machine language instructions.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Translation

Computers can only run machine language
programs directly.

Assembly language programs are assembled, or
translated into machine language.

_Ikewise, programs written in high-level languages,
ke Java, must also be translated into machine
anguage before they can be run. To do this
translation compile a program.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Translation

: : 10100110 01110110

#i ncl ude <stdi o. h> 00100110 00000000
11111010 11111010

I nt mai n() 01001110 10100110
{ 11100110 10010110
pri nt f (“ Hel | o Wor | d") : 11001110 00101110

10100110 01001110
11111010 01100110
01001110 10000110

} etc...

return O;

Source code Executable code

and translate a high
level program into executable machine

1/12/200'C0de School of Computer Science hmehta.scs@dauniv.ac.in




1/12/2007

Structured Programming

STRUCTURED PROGRAMMING = A
technique for organizing and coding computer
programs in which a hierarchy of modules Is
used, each having a single entry and a single
exit point, and in which control Is passed
downward through the structure withOUT
UNconditional branches to higher levels of
the structure. Three types of control flow are
used: (1) sequential, (2) selection, and (3)
iteration.

School of Computer Science hmehta.scs@dauniv.ac.in



Programming language C

e C Is a general purpose programming language.
e Cis a middle level language.

e CIs a structured language.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Programming language C

Why C is called “a middle level language”?

C contains the features of high level language
portability — it Is easy to adapt software written
for one type of computer to another type. the
functionality low level language.

- operators such as &, |,>,< etc. simulate to low

level instruction codes.
- Direct manipulation of bits, bytes and addresses.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Writing C Programs

A programmer uses a text editor to create or
modify files containing C code.

Code is also known as source code.

A file containing source code is called a source
file.

After a C source file has been created, the
programmer must invoke the C compiler
before the program can be executed (run).

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Invoking the tcc Compiler

At the prompt, type
tcc pgm.c

where pgm.c Is the C program source
file.

There Is a better way use of IDE instead of
command.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




The Result : pgm.obj, pgm.exe

If there are no errors in pgm.c, this command
produces an executable file, which is one that
can be executed (run).

The tcc compiler puts exe extension of the
executable file. Also the obj file contains the

machine level code.
To execute the program, at the prompt, type
pgm.exe

Although we call this process “compiling a
program,” what actually happens is more
complicated.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




3 Stages of Compilation

Stage 1: Preprocessing

- Performed by a program called the preprocessor

- Modifies the source code (in RAM) according to
preprocessor directives (preprocessor
commands) embedded in the source code

— Strips comments and white space from the code

— The source code as stored on disk is not modified.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




3 Stages of Compilation (con't)
Stage 2: Compilation

 Performed by a program called the compiler

e Translates the preprocessor-modified source
code Into object code (machine code)

e Checks for syntax errors and warnings

o Saves the object code to a disk file, If instructed
to do so (we will not do this).

e If any compiler errors are received, no object code
file will be generated.

* An object code file will be generated if only
warnings, not errors, are received.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




3 Stages of Compilation (con'’t)
Stage 3: Linking

« Combines the program object code with other
object code to produce the executable file.

* The other object code can come from the Run-
Time Library, other libraries, or object files that
you have created.

e Saves the executable code to a disk file. On
the Linux system, that file is called a.out.

e If any linker errors are received, no executable file
will be generated.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Program Development

Editor |
~

Source File pgm.c
nU

Preprocessor
~

Modified Source Code in RAM
L L

Compiler

~
Program Object Code File pgm.obj

Other Object Code Files (if any)
nU

Linker
1L

Executable File pgm.exe

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




A Simple C Program

[* Filename: hello.c
Author: Brian Kernighan & Dennis Ritchie
Date written: ?/?/1978

Description: This program prints the greeting
“Hello, World!”

*/
#include <stdio.h>

Int main ( void )

{

printf ( “Hello, World\n” ) ;
return O ;

}

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Anatomy of a C Program

program header comment
preprocessor directives (if any)

Int main ()

{

SEENES)
return O ;

}

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Program Header Comment

« Acomment is descriptive text used to help a
reader of the program understand its
content.

 All comments must begin with the characters

[* and end with the characters */
These are called comment delimiters

The program header comment always
comes first.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Preprocessor Directives

e Lines that begin with a # in column 1 are
called preprocessor directives
(commands).

« Example: the #include <stdio.h> directive

causes the preprocessor to include a copy of

t
t

ne standard input/output header file stdio.h at
nis point in the code.

"his header file was included because it

contains information about the printf ()

f

unction that Is used In this program.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




stdio.h

When we write our programs, there are
libraries of functions to help us so that we
do not have to write the same code over
and over again.

Some of the functions are very complex
and long. Not having to write them
ourselves make It easier and faster to
write programs.

* Using the functions will also make it easier
to learn to program!

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Int main ( void )

Every program must have a function called
main. This Is where program execution begins.

main() Is placed in the source code file as the
first function for readabillity.

The reserved word “int” indicates that main()
returns an integer value.

The parentheses following the reserved word
“main” indicate that it is a function.

The reserved word “void” means nothing Is
there.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




The Function Body

* A left brace (curly bracket) -- { -- begins the
body of every function. A corresponding
right brace -- } -- ends the function body.

* The style Is to place these braces on

separate lines in column 1 and to indent the
entire function body 3 to 5 spaces.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




printf (“Hello, World'\n”) ;

This line I1s a C statement.

It is a call to the function printf () with a

single argument (parameter), namely the
string “Hello, World\n".

Even though a string may contain many
characters, the string itself should be
thought of as a single quantity.

Notice that this line ends with a semicolon.
All statements in C end with a semicolon.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




return O ;

e Because function main() returns an integer value,
there must be a statement that indicates what this

value iIs.

e The statement
return O ;

Indicates that main() returns a value of zero to

the operating system.
* A value of O indicates that the program successfully

terminated execution.

e Do not worry about this concept now. Just
remember to use the statement.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Another C Program

/*****************************************

** File: projl.c
** Author:
** Date: 9/15/01

* E-mail:

**

** This program prompts the user for two integer values then displays

**their product.

**

***********************************************/

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Another C Program (con'’t)

#include <stdio.h>

Int main( void )

{
Int valuel, value2, product ;
printf(“ Enter two integer values: “) ;
scanf(“*%d%d”, &valuel, &value?2) ;
product = valuel * value2 ;
printf(“Product = %d\n”, product) ;

return O ;

}

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Tokens

 The smallest element in the C language is
the token.

e It may be a single character or a sequence
of characters to form a single item.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Tokens are:

 Tokens can be:
— Numeric constants
— Character constants
— String constants
— Keywords
— Names (identifiers)
— Punctuation
— Operators

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Numeric Constants

Numeric constants are an uninterrupted
sequence of digits (and may contain a
period). They never contain a comma.

o Examples:
— 123
— 98.6
— 1000000

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Character Constants

e One character from a defined character
set.

e Surrounded on the single quotation mark.
 Examples:

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




String Constants

* A sequence characters surrounded by
double quotation marks.

e Considered a single item.

 Examples:
_ HDAVV”

—“I like iIce cream.”
. “123”

— "DHOOM-2"
_ ucarn

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Keywords

Sometimes called reserved words.

Are defined as a part of the C language.
Can not be used for anything else!
Examples:

— Int

— while

— for

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Names

Sometimes called identifiers.

Can be of anything length, but on the first 31 are
significant (too long is as bad as too short).

Are case sensitive:
— abc is different from ABC

Must begin with a letter and the rest can be
letters, digits, and underscores.

There can be one exception to beginning letter
that variable name can start with underscore( )
but it Is used by C library.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Punctuation

Semicolons, colons, commas,

apostrophes, quotation marks, braces,
brackets, and parentheses.

ey 0TI AY()

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Operators

e There are operators for:

assignments

mathematical operations
relational operations

Boolean operations

bitwise operations

shifting values

calling functions

subscripting

obtaining the size of an object
obtaining the address of an object
referencing an object through its address

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




What Are Variables in C?

e Variables in C have the same meaning as
variables in algebra. That is, they represent
some unknown, or variable, value.

X=a+b
Zz+ 2 =3(y-5)

« Remember that variables in algebra are

represented by a single alphabetic
character.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Naming Variables

Variables in C may be given representations
containing multiple characters. But there are
rules for these representations.

Variable names (identifiers) in C

— May only consist of letters, digits, and
underscores

— May be as long as you like, but only the first 31
characters are significant

— May not begin with a digit
— May not be a C reserved word (keyword)

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Reserved Words (Keywords) In
C

auto break Int [o]gle
case char register return

const continue  short signed
default do Sizeof static
double else struct switch
enum extern typedef union
float for unsigned  void
goto If volatile while

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Naming Conventions

e C programmers generally agree on the
following conventions for naming variables.

— Begin variable names with lowercase letters

— use meaningful identifiers

— Separate “words” within identifiers with
underscores or mixed upper and lower case.

— Examples: surfaceArea surface Area
surface area

— Be consistent!

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Naming Conventions (con’t)

e Use all uppercase for symbolic constants
(used In #define preprocessor directives).

 Note: symbolic constants are not variables,
but make the program easier to read.

 Examples:

#define Pl 3.14159
#define AGE 52

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Case Sensitivity

e CIs case sensitive

— It matters whether an identifier, such as a
variable name, Is uppercase or lowercase.

— Example:
area
Area
AREA
ArkEa

are all seen as different variables by the
compiler.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Which Are Legal Identifiers?

AREA area_under_the curve
3D num45s

Last-Chance  #values

X_yt3 o]

num$ %done

lucky***

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Declaring Variables

Before using a variable, you must give the
compiler some information about the variable;
l.e., you must declare Iit.

The declaration statement includes the data
type of the variable.

They must be declared just after the start of
block (i.e. start of a function) and before any
other executable statement.

Examples of variable declarations:
Int meatballs ;
float area;

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Declaring Variables (con't)

e \When we declare a variable

— Space Is set aside in memory to hold a value of
ne specified data type

— That space Is associated with the variable name

— That space Is assoclated with a unique address

e Visualization of the declaration
Int meatballs :

meatballs

garbage

FEO7Y Int

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Notes About Variables

* You must not use a variable until you
somehow give it a value.

 You can not assume that the variable will
have a value before you give it one.

— Some compilers do, others do not! This is the
source of many errors that are difficult to find.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Simple Data Types

Type

Typical Size in Bits

Minimal Range

char

8

—-128 to 127

0 to 255

—-128 to 127

-32,768 to 32,767

0 to 65,535

Same as int

-32,768 to 32,767

0 to 65,535

Same as short int

—2,147,483,648 to 2,147,483,647

Same as long int

0 to 4,294,967,295

1E-37 to 1E+37 with six digits of precision
1E-37 to 1E+37 with ten digits of precision
1E-37 to 1E+37 with ten digits of precision

unsigned char 8

signed char 8
int 16

unsigned int 16

signed int 16
short int 16

unsigned short int 16

signed short int 16

long int 32

signed long int 32

unsigned long int 32
float 32
double 64
long double 80

1/12/2007

School of Computer Science hmehta.scs@dauniv.ac.in




Using Variables: Initialization

e Variables may be be given initial values, or
Initialized, when declared. Examples:

length

int length = 7 ; - 7

diameter

float diameter = 5.9 ; === 5.9

initial

char initial = ‘A’ ; — ‘A

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Using Variables: Assignment

Variables may have values assigned to them through
the use of an assignment statement.

Such a statement uses the assignment operator =

This operator does not denote equality. It assigns
the value of the right-hand side of the statement (the

expression) to the variable on the left-hand side.
Examples:

diameter = 5.9 ;
area = length * width ;

Note that only single variables (LValue) may appear
on the left-hand side of the assignment operator.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Functions

* |t is necessary for us to use some functions to
write our first programs.

* Functions are parts of programs that perform a
certain task and we have to give them some
Information so the function can do the task.

 We will show you how to use the functions as we
go through the course and later on will show you
how to create your own.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Getting Input from User

Every process requires some input from
the user. Variables hold the input values.

We have a function called scanf( ) that will
allow us to do that.

The function scanf needs two pieces of
Information to display things.

— The data type of input values

— Address where to store the values

scanf( “%f”, &diameter );

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Displaying Variables

e Variables hold values that we occasionally
want to show the person using the
program.

 \WWe have a function called printf( ) that will
allow us to do that.

e The function printf needs two pieces of
Information to display things.

— How to display it
— What to display
o printf( “%f\n”, &diameter );

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




printf( “%f\n”, diameter );

 The name of the function is “printf”.

 Inside the parentheses are:
— print specification, where we are going to
display:
« a floating point value (“%f")

 We want to have the next thing started on a new
line (*\n”).

— We want to display the contents of the
variable diameter.

 printf( ) has many other capabilities.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Backslash Codes

Meaning

\b

Backspace

\f

Form feed

\n

New line

\r

Carriage return

\t

Horizontal tab

Double quote

\l

Single quote

\\

Backslash

\\Y;

Vertical tab

\a

Alert

\?

Question mark

\N

Octal constant (where N is an octal constant)

\XN

Hexadecimal constant (where N Is a hexadecimal constant)

1/12/2007

School of Computer Science hmehta.scs@dauniv.ac.in




Format Specifiers for printf and

scanf

Data Type

Printf specifier

Scanf specifier

long double

%Lf

%Lf

double

%of

%lf

float

%of

%of

unsigned long int

%Ilu

%Iu

long int

%Id

%Id

unsigned int

%U

%U

INnt

%d

%d

short

%hd

%hd

char

%cC

%cC

1/12/2007

School of Computer Science

hmehta.scs@dauniv.ac.in




Both printf and scanf Returns a
Value

* \WWe can call printf as
1=810;
n=printf(“%d”,I);

e \WWe also can call a scanf
m=scanf(“%d%f”,&I,&f)

What will be the value of n & m if every thing
goes fine.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Example: Declarations and

Assignments

#include <stdio.h> inches
garbage

Int main( void ) feet

{ 2 e garbage
. : _ fathoms
Int Inches, feet, fathoms : garbage

fathoms

fathoms = 7 ; -
feet = 6 * fathoms ; feet

Inches = 12 * feet : inches
— 504

42

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Example: Declarations and
Assignments (cont’d)

orintf (“Its depth at sea: \n”) ;

orintf (*  %d fathoms \n”, fathoms) ;
orintf (*  %d feet \n”, feet) ;

orintf (*  %d Iinches \n”, inches) ;

return O ;

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Enhancing Our Example

o What If the depth were really 5.75

fathoms? Our program, as it is, couldn’t
handle it.

* Unlike integers, floating point numbers can
contain decimal portions. So, let's use
floating point, rather than integer.

e Let’s also ask the user to enter the number
of fathoms, by using the scanf( ) function.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Enhanced Program

#include <stdio.h>
Int main ( void )

{

float Inches, feet, fathoms :

printf (“Enter the depth in fathoms : ”) ;
scanf (“%f”, &fathoms) ;

feet = 6 * fathoms ;

Inches = 12 * feet ;

printf (“Its depth at sea: \n") ;

printf (*  %f fathoms \n”, fathoms) ;
printf (* %f feet \n”, feet) ;

printf (*  %f inches \n", inches) ;
return O ;

}

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




scanf (“%f", &fathoms) ;

 The scanf( ) function also needs two items:

— The Input specification “%f”. (Never put a “\n”
Into the Input specification.)

— The address of where to store the information.
(We can input more than one item at a time If
we wish, as long as we specify it correctly.)

 Notice the “&” In front of the variable name.

It says to use the address of the variable to

hold the information that the user enters.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Final “Clean” Program

#include <stdio.h>

#define FEET PER FATHOM 6
#define INCHES PER FOOT 12

Int main( void )

{

float inches ; [* number of inches deep */
float feet ; [* number of feet deep */
float fathoms ; /* number of fathoms deep */

[* Get the depth in fathoms from the user */

printf (“Enter the depth in fathoms : ") ;
scanf (“%f”, &fathoms) ;

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Final “Clean” Program (con’t)

[* Convert the depth to inches */

feet =FEET PER _FATHOM * fathoms ;
Inches = INCHES PER FOOT * feet ;

[* Display the results */

printf (“Its depth at sea: \n") ;

printf (*  %f fathoms \n”, fathoms) ;
printf (* %f feet \n”, feet);

printf (*  %f inches \n”, inches);,

return O ;

}

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Good Programming Practices

Place each variable declaration on its own
line with a descriptive comment.

Place a comment before each logical
“chunk” of code describing what It does.

Do not place a comment on the same line as
code (with the exception of variable
declarations).

Use spaces around all arithmetic and
assignment operators.

* Use blank lines to enhance readabillity.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Good Programming Practices
(con’t)
 Place a blank line between the last

variable declaration and the first
executable statement of the program.

* Indent the body of the program 3t0 5

spaces -- be consistent!

« Comments should explain why you are

doing something, not what you are doing

It.

a=a+1 /*addonetoa?* [* WRONG */
[* count new student */ /* RIGHT*/

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Another Sample Program

#include <stdio.h>

#define Pl 3.14159

Int main ( void )

{

float radius = 3.0;
float area:

area = Pl * radius * radius:
printf( “The area is %f.\n", area );
return O ;

}

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Arithmetic Operators in C

NEIE Operator Example

Addition W numl + num?2
Subtraction - Initial - spent
Multiplication * fathoms * 6
Division sum / count
Modulus m % n

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Division

If both operands of a division expression are
Integers, you will get an integer answer.
The fractional portion Is thrown away.

Examples : 17/ 5 = 3
4/ 3 =1
35/ 9 =3

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Division (con'’t)

* Division where at least one operand is a
floating point number will produce a
floating point answer.

 Examples : 170/ 5 =34
4/ 3.2 = 1.25
35.2 / 9.1 = 3.86813

 What happens? The integer operand Is
temporarily converted to a floating point,
then the division Is performed.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Division By Zero

* Division by zero is mathematically
undefined.

 If you allow division by zero in a program,
it will cause a fatal error. Your program
will terminate execution and give an error
message.

 Non-fatal errors do not cause program
termination, just produce incorrect results.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Modulus

 The expression m % n yields the integer
remainder after m is divided by n.

 Modulus Is an integer operation -- both
operands MUST be integers.

e Examples: 17 %5 = 2
6% 3 =0
9%W2 =1
5%8 = 5

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Uses for Modulus

e Used to determine if an integer value is
even or odd

5% 2=1 odd 49% 2 =0 even

If you take the modulus by 2 of an integer,

a result of 1 means the number is odd and
a result of 0 means the number Is even.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Arithmetic Operators
Rules of Operator Precedence

Operator(s) Precedence & Associativity

() Evaluated first. If nested,
Innermost first. If on same level,
evaluated left to right.

Evaluated second. If there are
several, evaluated left to right.

Evaluated third. If there are
several, evaluated left to right.

Evaluated last, right to left.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Using Parentheses
parentheses to change the order Iin
N an expression Is evaluated.

atb*c Would multiply b * c first,
then add a to the result.

If you really want the sum of a and b to be
multiplied by c, use parentheses to force the
evaluation to be done in the order you want.

(a+b)*c
* Also use parentheses to clarify a complex
expression.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Practice With Evaluating
Expressions

Given integer variables a, b, c, d, and e,
wherea=1,b=2,c=3,d=4,

evaluate the following expressions:

at+tb-c+d
a*b/c
l1+a*b%c
a+t+d%b-c
e=b=d+c/b-a

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Relational Operators

less than

greater than

less than or equal to
greater than or equal to
IS equal to

IS not equal to

Relational expressions evaluate to the integer
values 1 (true) or O (false).

All of these operators are called binary operators
because they take two expressions as operands.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Practice with Relational
Expressions

Nnta=1,b=2,¢c=3:

Expression Value  Expression Value
a < ¢ at+tb>=c

b<=cC at+tb==c

c<=a al=>b

a>Db at+tbl=c

b>=cC

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




ked Arithmetic Expressions: True or
False

 Arithmetic expressions evaluate to
numeric values.

e An arithmetic expression that has a value
of zero Is false.

e An arithmetic expression that has a value
other than zero Is true.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Practice with Arithmetic
Expressions

nt a=1,b=2,c=3;
float x=3.33,y =6.66 ;

Expression Numeric Value True/False

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Increment and Decrement
Operators

‘he iIncrement operator ++
he decrement operator --
Precedence: lower than (), but higher than

* [ and %
Associativity: right to left

Increment and decrement operators can
only be applied to variables, not to
constants or expressions

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Increment Operator

e |f we want to add one to a variable, we can
say.

count = count + 1 ;
 Programs often contain statements that

Increment variables, so to save on typing, C
provides these shortcuts:

count++: OR ++count ;

Both do the same thing. They change the
value of count by adding one to It.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Postincrement Operator

 The position of the ++ determines when the value
IS Incremented. If the ++ Is after the variable, then
the incrementing is done last (a postincrement).

Int amount, count ;

count =3
amount = 2 * count++ ;

e amount gets the value of 2 * 3, which Is 6, and
then 1 gets added to count.

e So, after executing the last line, amount is 6 and
count is 4.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Preincrement Operator

If the ++ Is before the variable, then the
Incrementing Is done first (a preincrement).

INt amount, count ;

count =3
amount = 2 * ++count ;

1 gets added to count first, then amount gets the
value of 2 * 4, which is 8.

So, after executing the last line, amount is 8 and
count is 4.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Code Example Using ++

#include <stdio.h>
Int main ()

{
ntir=1:

/* count from 1 to 10 */
while (i< 11)
{
printf (“%d ", 1) ;
|+t ; [* same as ++I */

}

return O ;

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Decrement Operator

e |f we want to subtract one from a variable, we
can say:

count = count -1 ;
 Programs often contain statements that

decrement variables, so to save on typing, C
provides these shortcuts:

count--; OR --count ;

Both do the same thing. They change the
value of count by subtracting one from it.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Postdecrement Operator

The position of the -- determines when the value Is
decremented. If the -- Is after the variable, then
the decrementing is done last (a postdecrement).

Int amount, count ;

count =3
amount = 2 * count-- ;

amount gets the value of 2 * 3, which is 6, and
then 1 gets subtracted from count.

So, after executing the last line, amount is 6 and
count is 2.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Predecrement Operator

If the -- Is before the variable, then the
decrementing is done first (a predecrement).

INt amount, count ;

count =3
amount = 2 * --count ;

1 gets subtracted from count first, then amount
gets the value of 2 * 2, which is 4.

So, after executing the last line, amount is 4 and
count is 2.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




A Hand Trace Example

Int answer, value = 4 ;

Code Value Answer
4 garbage

value = value + 1 :
value++ :

++value ;

answer = 2 * value++ ;
answer = ++value / 2 ;
value-- ;

--value ;

answer = --value * 2 ;

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Lvalue Required

answer++ = value--/ 3 :

* In C any value that Is having an address Is
called an Lvalue.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Practice

inta=1,b=2,c=3;
What Is the value of this expression?

++a* b - c--

What are the new values of a, b, and c?

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




More Practice

Given
inta=1,b=2,c=3,d=4;

What Is the value of this expression?

++b/c+a*d++

What are the new values of a, b, ¢, and d?

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Assignment Operators

— = -= *= 0=
Statement Equivalent Statement
a=a+?2; a+=2;
a—-a-3; a-=3,;
a=-a*2; a*=2;
a=al4; al=4,
a=a%2,; a%=2;
b=b+(c+2); b+=c+ 2;
d=d*(e-5); d*=e-5;

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Practice with Assignment

Operators
Inti=1,]=2, k=3, m=4;

EXpression Value
| += |+ K

J*=k=m+5

K-=m/=j*2

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Code Example Using /= and ++
Counting the Digits in an Integer

#include <stdio.h>
Int main ()

{

Int num, temp, digits =0 ;
temp = num = 4327 ;
while (temp >0 )

printf (“%d\n”, temp) ;
temp /=10 ;
digits++ ;
}
printf (“There are %d digits in %d.\n”, digits, num) ;

return O ;

}

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Operator Precedence and
Associativity

Precedence Associativity

() left to right/inside-out
++ -- 1 + (unary) - (unary) (type) right to left
* | % left to right
+ (addition) - (subtraction) left to right
left to right
left to right
left to right
left to right
right to left
right to left

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Review: Structured

Programming

 All programs can be written in terms of
only three control structures

— The sequence structure
e Unless otherwise directed, the statements are

executed in the order in which they are written.
— The selection structure

* Used to choose among alternative courses of
action.

— The repetition structure

« Allows an action to be repeated while some
condition remains true.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Selection: the If statement

If ( condition )

{

statement(s) /* body of the If statement */

The braces are not required If the body contains
only a single statement. However, they are a
good idea and are required by the 104 C Coding
Standards.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Examples

if (age >=18)

{
printf(“Vote\n”) ;

If (value ==0)

{
printf (“The value you entered was zero.\n") ;
printf (“Please try again.\n") ;

}

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Good Programming Practice

* Always place braces around the body of
an If statement.

 Advantages:

— Easier to read

— Will not forget to add the braces if you go
back and add a second statement to the body

— Less likely to make a semantic error

* Indent the body of the If statement 3 to 5
spaces -- be consistent!

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Selection: the if-else statement

If ( condition )

{

statement(s) /*the if clause */

}

else

{

statement(s) /*the else clause */

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Example

if (age >=18)
{
printf(“Vote\n”) ;

}

else

{
printf(“Maybe next time!\n”) ;

}

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Example

If (value ==0)

{
printf (“The value you entered was zero.\n") ;
printf(“Please try again.\n”) ;

}

else

{

printf (“Value = %d.\n", value) ;

}

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Good Programming Practice

» Always place braces around the bodies of
the If and else clauses of an if-else
statement.

 Advantages:

— Easler to read

— Will not forget to add the braces if you go back
and add a second statement to the clause

— Less likely to make a semantic error

e |ndent the bodies of the If and else clauses
3 to 5 spaces -- be consistent!

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




The Conditional Operator

exprl ? expr2 : expr3

If exprl is true then expr2 is executed, else expr3 is evaluated,
l.e.:

Xx=(1(y<z)?y:2);
OR

(y < z) ? printf("%d is smaller”,y): printf(“%d is smaller”,y);

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Nesting of If-else Statements

If ( condition, )

{

statement(s)

}

else if ( condition, )
{
}
else
{
}

statement(s)

/* more else clauses may be here */

statement(s) /* the default case */

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Example

if (value == 0)

{

printf (“The value you entered was zero.\n") ;

}

else If (value <0)

{

printf (“%d Is negative.\n”, value) ;

}

else

{

printf (“%d Is positive.\n", value) ;

}

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Gotcha! = versus

inta=2:

f(a=1) /*semantic (logic) error! */

{

printf (“a is one\n”) ;

}

elseif(a==2)

{

printf (“a is two\n”) ;

}

else

{
printf (“a is %d\n”, a) ;

}

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Gotcha (con't)

The statement If (a=1) Is syntactically correct,
SO no error message will be produced. (Some
compilers will produce a warning.) However, a
semantic (logic) error will occur.

An assignment expression has a value -- the
value being assigned. In this case the value
being assigned is 1, which Is true.

If the value being assigned was 0, then the
expression would evaluate to 0, which is false.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Logical Operators

So far we have seen only simple conditions.
if (count>10)...

Sometimes we need to test multiple conditions in
order to make a decision.

Logical operators are used for combining simple
conditions to make complex conditions.

&& 1S AND f(x>5 && y<6)
| IS OR f(z==0 || x>10)
| IS NOT If (! (bob >42))

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Example Use of &&

If (age <1 && gender =='m’)

{
printf (“Infant boy\n”) ;

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Truth Table for &&

Expression, Expression, Expression, && Expression,

0 0
0 nonzero
nonzero 0

nonzero nonzero

Exp,; && EXxp, && ... && Exp,, will evaluate to 1 (true)
only if ALL subconditions are true.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Example Use of ||

If (grade == ‘D’ || grade ==‘F’)
{

printf (“See with your Juniors \n") ;

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Truth Table for ||

Expression, Expression, Expression, || Expression,

0 0
0 nonzero
nonzero 0

nonzero nonzero

Exp, && Exp, && ... && Exp,, will evaluate to 1
(true) If only ONE subcondition is true.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Example Use of !

f(!'(x==2)) /[*sameas (x!=2) */

{

printf(“x is not equal to 2.\n”) ;

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Truth Table for !

Expression | EXpression

0

nonzero

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Gotcha! && or |

inta=0;
Int b=1;
If ((at++ ==1) && (b++==1)) /* semantic (logic) error! */
{
printf (“First Gotcha\n”) ;
}
elseif ((@++==0) || (b++==1))
{
printf (“Second Gotcha\n”) ;

}

else

{
printf (“a is %d\n”, a) ;

}

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Gotcha (con't)

While evaluating a condition if first subpart of a
Complex condition having && operator Is false
than the remaining subpart will not be evaluated.

Similarly While evaluating a condition If first
subpart of a Complex condition having || operator
IS true than the remaining subpart will not be
evaluated.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Some Practice Expressions

inta=1,b=0,c=7;

Expression Numeric Value True/False

Ic

a&&'b
a<b&&b<c
a>b&&b<c
a>=Db|lb>c

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




More Practice

inta=5,b=7,¢c=17;
evaluate each expression as True or False.

l.c/b==
2.C%b<=a%b
3.b+c/al=c-a

4. (b<c)&&(c==7)
5(c+1-b==0)|| (b=5)

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Review: Repetition Structure

 Arepetition structure allows the programmer
to specify that an action is to be repeated while
some condition remains true.

 There are three repetition structures in C, the
while loop, the for loop, and the do-while loop.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




The while Repetition Structure

while ( condition )

{

statement(s)

}

The braces are not required if the loop body
contains only a single statement. However, they
are a good idea and are required by the 104 C
Coding Standards.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Parts of a While Loop

Every while loop will always contain
three main elements:

— Priming: initialize your variables.

— Testing: test against some known condition.
— Updating: update the variable that Is tested.




Simple While Loog

#i ncl ude <stdi o. h>
#def1 ne MAX 10

min ()
{

| nt | ndex =1;:
whil e (1 ndex <= NMAX) {

printf ("Index: %\n", 1ndex)

| ndex = | ndex + 1;

© 00 N oo o b~ wWw N P

[EEY
o




Example

while ( children >0 )
{

children = children - 1 :
cookies = cookies * 2 :

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Good Programming Practice

* Always place braces around the body of a
while loop.

* Advantages:
— Easier to read

— Will not forget to add the braces if you go
pack and add a second statement to the loop
nody

— Less likely to make a semantic error

* Indent the body of a while loop 3to 5
spaces -- be consistent!

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Another while Loop Example

Problem: Write a program that calculates
the average exam grade for a class of 10

students.

 \What are the program inputs?
— the exam grades

 \What are the program outputs?
— the average exam grade

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




The Pseudocode

<total>=0
<grade_counter>=1

While (<grade_counter> <= 10)

Display “Enter a grade: ”
Read <grade>

<total> = <total> + <grade>
<grade_counter> = <grade_counter> + 1
End_while
<average> = <total>/ 10
Display “Class average Is: “, <average>

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




The C Code

#include <stdio.h>
Int main ()

{

Int counter, grade, total, average ;

total =0 ;
counter =1 ;

while ( counter <= 10)

{
printf (“Enter a grade : “) ;
scanf (“%d”, &grade) ;

total = total + grade ;
} counter = counter + 1 ;

average =total / 10 ;
printf (“Class average is: %d\n”, average) ;
return O ;

}

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Versatile?

How versatile Is this program?
It only works with class sizes of 10.
We would like 1t to work with any class size.

A better way :

— Ask the user how many students are in the
class. Use that number in the condition of the
while loop and when computing the average.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




New Pseudocode

<total> =0
<grade_ counter>=1

Display “Enter the number of students: *“
Read <num_students>
While (<grade_counter> <= <num_students>)
Display “Enter a grade: ”
Read <grade>
<total> = <total> + <grade>
<grade_counter> = <grade_ counter> + 1
End_while
<average> = <total> / <num_students>
Display “Class average Is: “, <average>

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




New C Code

#include <stdio.h>
Int main ()

{

}

1/12/2007

Int numStudents, counter, grade, total, average ;

total = 0 ;
counter =1 ;

printf (“Enter the number of students: “) ;
scanf (“%d”, &numStudents) ;
while ( counter <= numStudents) {

printf (“Enter a grade : “) ;

scanf (“%d”, &grade) ;

total = total + grade ;
counter = counter + 1 ;

}

average = total / numStudents ;
printf (“Class average is: %d\n”, average) ;
return O ;

School of Computer Science hmehta.scs@dauniv.ac.in



Why Bother to Make It Easier?

Why do we write programs?
— So the user can perform some task

The more versatile the program, the more
difficult it is to write. BUT It Is more useable.

The more complex the task, the more difficult

It IS to write. But that Is often what a user
needs.

Always consider the user first.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Using a Sentinel Value

We could let the user keep entering grades
and when he’s done enter some special
value that signals us that he’s done.

This special signal value Is called a

sentinel value.

 \We have to make sure that the value we
choose as the sentinel isn’t a legal value.
For example, we can’t use 0 as the sentinel
In our example as it is a legal value for an
exam score.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




The Priming Read

e \When we use a sentinel value to control a
while loop, we have to get the first value
from the user before we encounter the

loop so that it will be tested and the loop
can be entered.

e This Is known as a priming read.

* \We have to give significant thought to the
initialization of variables, the sentinel
value, and getting into the loop.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




New Pseudocode

<total> =0
<grade_ counter>=1

Display “Enter a grade: “

Read <grade>

While (<grade> != -1)
<total> = <total> + <grade>
<grade_counter> = <grade_counter> +1
Display “Enter another grade: ”
Read <grade>

End_while

<average> = <total> / <grade_counter>

Display “Class average Is: “, <average>

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




New C Code

#include <stdio.h>
Int main ()

{

Int counter, grade, total, average ;

total = 0 ;
counter=1 ;
printf(* Enter a grade: “) ;
scanf(*%d”, &grade) ;
while (grade '=-1) {
total = total + grade ;
counter = counter + 1;
printf(“Enter another grade: “) ;
scanf(*%d”, &grade) ;

average = total / counter ;
printf (“Class average is: %d\n”, average) ;

return O ;

}

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Final “Clean” C Code

#include <stdio.h>

Int main ()

{
Int counter ;  /* counts number of grades entered */
Int grade ; [* individual grade */
Int total; /* total of all grades */
Int average ; /[* average grade */

[* Initializations */

total = 0 ;
counter=1 ;

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Final “Clean” C Code (con’t)

[* Get grades from user */
[* Compute grade total and number of grades */

printf(“Enter a grade: “) ;
scanf(“%d”, &grade) ;
while (grade '=-1) {
total = total + grade ;
counter = counter + 1 ;
printf(“Enter another grade: “) ;
scanf(“%d”, &grade) ;

[* Compute and display the average grade */

average = total / counter ;
printf (“Class average is: %d\n”, average) ;

return O ;

}

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Using a while Loop to Check
User Input

#include <stdio.h>

Int main ()

{
Int number ;
printf (“Enter a positive integer : ) ;
scanf (“%d”, &number) ;

while ( number <=0)

{

printf (\nThat’s incorrect. Try again.\n”) ;
printf (“Enter a positive integer: ) ;
scanf (“%d”, &number) ;

}

printf (“You entered: %d\n”, number) ;
return O ;

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Counter-Controlled Repetition
(Definite Repetition)

o If it Is known In advance exactly how many
times a loop will execute, it is known as a
counter-controlled loop.

Inti=1;

while (1<=10)

{
printf(“i = %d\n”, 1) ;
=i+ 1;

}

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Counter-Controlled Repetition
(con’t)

- |s the following loop a counter-controlled
loop?

while (x I=y)

{
printf(“x = %d”, x) ;

X=X+2;:

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Event-Controlled Repetition
(Indefinite Repetition)
o Ifitis NOT known in advance exactly how

many times a loop will execute, it Is known
as an event-controlled loop.

sum =0 ;

printf(“Enter an integer value: “) ;

scanf(*%d”, &value) ;

while ( value '=-1) {
sum = sum + value ;
printf(“Enter another value: “) ;
scanf(*%d”, &value) ;

}

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Event-Controlled Repetition
(con’t)

* An event-controlled loop will terminate
when some event occurs.

 The event may be the occurrence of a
sentinel value, as in the previous example.

 There are other types of events that may

occur, such as reaching the end of a data
file.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




The 3 Parts of a Loop

#include <stdio.h>
Int main ()
{
INt1=1, g e—Nitialization of loop control variable

[* count from 1 to 100 */
while (1< 101)
S —
{
printf (“%d “, 1) ;
1=1+1,; modification of loop control

] —e—  \/;(ighle

return O ;

test of loop termination condition

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




The for Loop Repetition
Structure

The for loop handles detalils of the counter-controlled
loop “automatically”.

The Initialization of the the loop control variable, the
termination condition test, and control variable
modification are handled in the for loop structure.

for (i=1;i<101;i=i+1)

{ t
INnitialization modification
} test

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




4 \When Does a for Loop Initialize, Test
and Modify?

« Just as with a while loop, a for loop

— Initializes the loop control variable before
beginning the first loop iteration,

— modifies the loop control variable at the very

end of each Iiteration of the loop, and

— performs the loop termination test before each
iteration of the loop.

he for loop Is easier to write and read for
counter-controlled loops.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




A for Loop That Counts From O
09

for(1=0; 1<10; I=1+1)
{
printf (“%d\n”, 1) ;

}

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




We Can Count Backwards, Too

for(1=9;1>=0;1=1-1)
{

printf (“%d\n”, 1) ;
}

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




We Can Count By 2's ... or 7’s
... or Whatever

for(1=0;1<10;1=1+2)
{

printf (“%d\n”, 1) ;
}

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




The do-while Repetition
Structure

statement(s)
} while ( condition ) ;

 The body of a do-while is ALWAYS
executed at least once. Is this true of a
while loop? What about a for loop?

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Example

printf (“Enter a positive number: “) ;
scanf (“%d”, &num) ;
If (num<=0)
{
printf (\nThat Is not positive. Try again\n”) ;

}

}while (num<=0);

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




An Equivalent while Loop

printf (“Enter a positive number: ) ;

scanf (“%d”, &num) ;

while (num <=0)

{
printf (\nThat is not positive. Try again\n”) ;
printf (“Enter a positive number: “) ;
scanf (“%d”, &num) ;

}

* Notice that using a while loop In this case
requires a priming read.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




An Equivalent for Loop

printf (“Enter a positive number: “) ;
scanf (“%d”, &num) ;

for (; num <=0; )

{
printf (\nThat Is not positive. Try again\n”) ;

printf (“Enter a positive number: ) ;
scanf (“%d”, &num) ;

}

A for loop is a very awkward choice here because
the loop Is event-controlled.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




So, Which Type of Loop Should |
Use?

 Use a for loop for counter-controlled
repetition.

e Use a while or do-while loop for event-
controlled repetition.

— Use a do-while loop when the loop must
execute at least one time.

— Use a while loop when it is possible that the
loop may never execute.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Infinite Loop

* Infinite Loop: A loop that never ends.
— Generally, you want to avoid these!

— There are special cases, however, when
you do want to create infinite loops on
purpose.

e Common Exam Questions:

— Given a piece of code, identify the bug In
the code.

— You may need to identify infinite loops.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Infinite Loop Example #1

#include <stdio.h>
#define MAX 10
main ()

{
Int iIndex =1;
while (index <= MAX)

{
printf ("Index: %d\n", index);

[ forever]

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Infinite Loop, Example #2

#include <stdio.h>
/*no MAX here*/
main ()
{
Int index = 1;
while (index > 0)
{
printf ("Index: %d\n", index);
Index = index + 1;

}

1/12/2007 School of Computer Science

| ndex:
| ndex:
| ndex:
| ndex:

| ndex:

...[forever] ?

hmehta.scs@dauniv.ac.in




Nested Loops

* Loops may be nested (embedded) inside
of each other.

 Actually, any control structure (sequence,
selection, or repetition) may be nested
Inside of any other control structure.

 Itis common to see nested for loops.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Nested for Loops

for(i=1;1<5;i=i+1)

{
for(J=1;]<3;j=]+1)
{

if(j%2==0) —=mmmm How many times is the “if”
{ statement executed?

printf (“*O”) ;
}

else

{
printf (“X”) ;

}

What is the output ?

}
printf (\n”) ;

}

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




The break Statement

 The break statement can be used In
while, do-while, and for loops to
cause premature exit of the loop.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Example break in a for Loop

#include <stdio.h>

Int main ()

{ OUTPUT:
Nt i ;
for(i=1;i<10;i=i+1) 1234
{

if (i == 5)
{

break

}
printf (“%d “, 1) ;

Broke out of loop ati =5.

}
printf (“\nBroke out of loop at i = %d.\n", i) ;

return O :

}

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




The continue Statement

e The continue statement can be used
In while, do-while, and for loops.

e [t causes the remaining statements In

the body of the loop to be skipped for
the current iteration of the loop.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Example continue in a for Loop

#include <stdio.h>

Int main ()

{ OUTPUT:
Nt i ;
for(i=1;i<10;i=i+1) 12346789
{

if (i == 5)
{

continue ;

}
printf (“%d 7, 1) ;

Done.

}
printf (\nDone.\n") ;

return O :
}

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Debugging Tips

e Trace your code by hand (a hand trace),
keeping track of the value of each
variable.

 Insert temporary printf() statements so you
can see what your program is doing.

— Confirm that the correct value(s) has been
read In.

— Check the results of arithmetic computations
Immediately after they are performed.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Multiple Selection

e So far, we have only seen binary
selection.
If (age >=18)

{
printf(“Vote\n”) ;

If (age >=18)

{
printf(“Vote\n”) ;

}

else

{
printf(“Maybe next timel\n”) ;

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Multiple Selection (con’t)

e Sometimes it IS necessary to branch in
more than two directions.

 \WWe do this via multiple selection.

 The multiple selection mechanism in C is
the switch statement.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Multiple Selection with if

if (day ==0) {
printf (“Sunday”) ; Ij ey == 4
\ printf (“Thursday”) ;
If (day ==1) { |}f (day == 5) {
printf (“Monday”) ; printf (“Friday”) ;
} }

IHCEVESMX If (day == 6) {

printf (“Saturday”) ;

}

J it (day < 0) || (day > 6)) {

if (day == 3) { printf(“Error - invalid day.\n”) ;
printf (“Wednesday”) ; }

printf (“Tuesday”) ;

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Multiple Selection with If-else

if (day ==
printf (*Sunday”) ;
}elseif (day ==1){
printf (“Monday”) ;

} else if (day == 2) { This If-else structure IS more
printf (“Tuesday”) ;

1 else if (day == 3) { efficient than the corresponding

printf (“Wednesday”) ; I D
| oot iy If structure. Why"

printf (“Thursday”) ;
} else if (day ==5) {
printf (“Friday”) ;
} else if (day =6) {
printf (“Saturday”) ;
} else {
printf (“Error - invalid day.\n") ;

}

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




k4 The switch Multiple-Selection
Structure

switch ( integer expression )
{
case constant, :
statement(s)
break ;
case constant, :

statement(s)
break ;

default:
statement(s)
break ;

}

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




switch Statement Detalls

The last statement of each case In the
switch should almost always be a break.

The break causes program control to jump
to the closing brace of the switch structure.

Switch statement can only test for equality
condition (==).

A switch statement will compile without a
default case, but always consider using one.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Good Programming Practices

e |Include a default case to catch invalid
data.

nform the user of the type of error that
nas occurred (e.g., “Error - invalid day.”).

f appropriate, display the invalid value.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




switch Example

switch (day )

{

case 0:

case 1:

case 2:

case 3:

case 4.

case b:

case 6:

default:

1/12/2007

printf (* Sunday\n”) ;
break ;

printf (“Monday\n”) ; Is this structure more

break :

printf (“Tuesday\n”) ; EBffi()iEBr]t tf]Eif] tf]EE
break ; equivalent nested if-else

printf (*Wednesday\n”) ;

break structure?
printf (* Thursday\n”) ;

break ;

printf (“ Friday\n”) ;

break ;

printf (* Saturday\n”) ;

break ;

printf (“Error -- invalid day.\n") ;

break ;

School of Computer Science hmehta.scs@dauniv.ac.in



Why Use a switch Statement?

* A nested if-else structure Is just as efficient
as a switch statement.

 However, a switch statement may be
easier to read.

e Also, It IS easier to add new cases to a
switch statement than to a nested If-else
structure.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




The char Data Type

The char data type holds a single character.
char ch;
Example assignments:

char grade, symbol,

grade = ‘B’;

symbol = ‘$’;
The char Is held as a one-byte integer in memory.
The ASCII code Is what Is actually stored, so we

can use them as characters or integers,
depending on our need.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




The char Data Type (con't)

e Use
scanf (“%c”, &ch) ;

to read a single character into the variable ch.
(Note that the variable does not have to be called

“ch™.”)
e Use
printf(“%c”, ch) ;

to display the value of a character variable.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




char Example

#include <stdio.h>
Int main ()

{

char ch ;

printf (“Enter a character: “) ;

scanf (“%c”, &ch) ;

printf (“The value of %c is %d.\n", ch, ch) ;
return O ;

If the user entered an A, the output would be:

The value of A is 65.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




The getchar () Function

 The getchar( ) function is found in the stdio
library.

 The getchar( ) function reads one character
from stdin (the standard input buffer) and
returns that character’s ASCII value.

e The value can be stored in either a character
variable or an integer variable.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




getchar () Example

#include <stdio.h>
Int main ()

{

charch; /*int ch would also work! */

printf (“Enter a character: “) ;

ch = getchar() ;

printf (“The value of %c is %d.\n", ch, ch) ;
return O ;

}

If the user entered an A, the output would be:

The value of A is 65.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Problems with Reading Characters

When getting characters, whether using scanf( ) or
getchar( ), realize that you are reading only one
character.

What will the user actually type? The character
he/she wants to enter, followed by pressing ENTER.

So, the user is actually entering two characters,
his/her response and the newline character.

Unless you handle this, the newline character will
remain in the stdin stream causing problems the next
time you want to read a character. Another call to
scanf() or getchar( ) will remove lit.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Improved getchar( ) Example

#include <stdio.h>
Int main ()

{

char ch, newline ;

printf (“Enter a character: ) ;

ch = getchar() ;

newline = getchar(); /*could also use scanf(“%c”, &newline) ; */
printf (“The value of %c is %d.\n", ch, ch) ;

return O ;

}

If the user entered an A, the output would be:

The value of A Is 65.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




g4 Additional Concerns with Garbage in
stdin

When we were reading integers using scanf( ), we
didn’'t seem to have problems with the newline

character, even though the user was typing ENTER
after the integer.

That is because scanf( ) was looking for the next

Integer and ignored the newline (whitespace).

If we use scanf (“%d”, &num); to get an integer, the
newline is still stuck in the input stream.

If the next item we want to get is a character, whether
we use scanf( ) or getchar( ), we will get the newline.

 \WWe have to take this into account and remove It.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




EOF Predefined Constant

getchar( ) Is usually used to get characters from
a file until the end of the file is reached.

The value used to indicate the end of file varies
from system to system. Itis system
dependent.

But, regardless of the system you are using,
there is a #define In the stdio library for a
symbolic integer constant called EOF.

EOF holds the value of the end-of-file marker for
the system that you are using.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




getchar( ) Example Using EOF

#include <stdio.h>
int main ()

{

int grade, aCount, bCount, cCount, dCount, fCount ;
aCount = bCount = cCount =dCount =fCount =0 ;
while ( (grade = getchar()) !'= EOF) {

switch (grade) {

case ‘A’: aCount++; break ;
case ‘B’: bCount++; break ;
case ‘C' : cCount++; break ;
case ‘D’: dCount++; break ;
case ‘F': fCount++; break ;
default : break ;

}

return O ;

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Incremental Programming
Review

* Write your code in incomplete but working pieces.
 For example, for your projects,

— Don’t write the whole program at once.

— Just write enough to display the user prompt on

the screen.
— Get that part working first (compile and run).

— Next, write the part that gets the value from the
user, and then just print it out.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




kad Increment Programming Review
(con’t)

— Get that working (compile and run).

— Next, change the code so that you use the
value In a calculation and print out the
answer.

— Get that working (compile and run).

— Continue this process until you have the final
version.

— Get the final version working.

e Bottom line: Always have a working
version of your program!

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Example of Incremental
Programming

Problem:

e Write an interactive program that allows the
user to calculate the interest accrued on a
savings account. The interest is compounded
annually.

The user must supply the principal amount,
the interest rate, and the number of years
over which to compute the interest.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Rough Algorithm

Print explanation of the program
Get <principal> from user

Get <interest rate> from user

Get <number of years> from user
<amount> = <principal>

While (<number of years> >0 )
amount = amount + (amount X <interest rate>)
<number of years> = <number of year> + 1

End_while
<interest accrued> = <amount> - <principal>

Display report

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Report Design

Interest rate : 7.0000 %
Period : 20 years

Principal at start of period : 1000.00

Interest accrued : 2869.68
Total amount at end of period : 3869.68

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Version #1

[* Filename: Interest.c
* Author: Hemant Mehta
Date written: 11/14//06

Description: This program computes the interest accrued in an account
that compounds interest annually. */

#include <stdio.h>
Int main ()

{

*
*
*

[* Print Instructions */
printf (“This program computes the interest accrued in an account that\n”);

printf (“compounds interest annually. You will need to enter the amount\n”);
printf (“of the principal, the interest rate and the number of years.\n\n");

return O;

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Output #1

This program computes the interest accrued in an account that
compounds interest annually. You will need to enter the amount
of the principal, the interest rate and the number of years.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Version #2

[* Filename: interest.c

* Author:

* Date written: 11/14//99

* Description: This program computes the interest accrued in an account

* that compounds interest annually. */
#include <stdio.h>

int main ()

{

float principal, rate ;
int years;

[* Print Instructions */

printf (“This program computes the interest accrued in an account that\n”) ;
printf (“compounds interest annually. You will need to enter the amount\n”) ;
printf (“of the principal, the interest rate and the number of years.\n\n") ;

[* Get input from user */

printf (“Enter the principal amount : “) ;

scanf (“%f”, &principal) ;

printf (“Enter the interest rate as a decimal (for 7%% enter .07) : “) ;
scanf (“%f”, &rate) ;

printf (“Enter the number of years : ) ;

scanf (“*%d”, &years) ;

printf (“\nprincipal = %f, rate = %f, years = %d\n”, principal, rate, years ) ;
return O ;

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Output #2

This program computes the interest accrued in an account that
compounds interest annually. You will need to enter the amount
of the principal, the interest rate and the number of years.

Enter the principal amount : 1000.00

Enter the interest rate as a decimal (for 7% enter .07) : .07
Enter the number of years : 20

principal = 1000.000000, rate = 0.070000, years = 20

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Version #3

[* Filename: interest.c

* Author:

* Date written: 11/14//99

* Description: This program computes the interest accrued in an account

* that compounds interest annually. */
#include <stdio.h>

int main ()

{

float principal, rate, amount, interest ;

int years,i;

[* Print Instructions */

printf (“This program computes the interest accrued in an account that\n”);
printf (“compounds interest annually. You will need to enter the amount\n”);
printf (“of the principal, the interest rate and the number of years.\n\n");

[* Get input from user */

printf (“Enter the principal amount : “);

scanf (“%f”, &principal);

printf (“Enter the interest rate as a decimal (for 7%% enter .07) : *) ;
scanf (“%f”, &rate);

printf (“Enter the number of years : “),

scanf (“%d”, &years);

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Version #3 (con'’t)

[* Save the original principal amount by varying another variable, amount */
amount = principal;

[* Calculate total amount in the account after the specified number of years */
for (i=0;i<1;i++)

{
}

[* Calculate accrued interest */
interest = amount - principal ;

amount += amount *rate

printf (“\nprincipal = %f, rate = %f, years = %d\n”, principal, rate, years ) ;
printf (*amount = %f, interest = %f\n”);

return O ;

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Output #3

This program computes the interest accrued in an account that
compounds interest annually. You will need to enter the amount
of the principal, the interest rate and the number of years.

Enter the principal amount : 1000.00

Enter the interest rate as a decimal (for 7% enter .07) : .07
Enter the number of years : 20

principal = 1000.000000, rate = 0.070000, years = 20
amount = 1070.000000, interest = 70.000000

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Version #4

[* Filename: interest.c

* Author:

* Date written: 11/14//99

* Description: This program computes the interest accrued in an account

* that compounds interest annually. */
#include <stdio.h>

int main ()

{

float principal, rate, amount, interest ;

int years,i;

[* Print Instructions */

printf (“This program computes the interest accrued in an account that\n”);
printf (“compounds interest annually. You will need to enter the amount\n”);
printf (“of the principal, the interest rate and the number of years.\n\n");

[* Get input from user */

printf (“Enter the principal amount : “);

scanf (“%f”, &principal);

printf (“Enter the interest rate as a decimal (for 7%% enter .07) : *) ;
scanf (“%f”, &rate);

printf (“Enter the number of years : “),

scanf (“%d”, &years);

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Version #4 (con'’t)

[* Save the original principal amount by varying another variable, amount */
amount = principal;

[* Calculate total amount in the account after the specified number of years */
for (i=0;1<2;i++)

{
}

[* Calculate accrued interest */
Interest = amount - principal ;

amount += amount * rate ;

printf (“\nprincipal = %f, rate = %f, years = %d\n”, principal, rate, years ) ;
printf (“amount = %f, interest = %f\n”);

return O ;

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Output #4

This program computes the interest accrued in an account that
compounds interest annually. You will need to enter the amount
of the principal, the interest rate and the number of years.

Enter the principal amount : 1000.00

Enter the interest rate as a decimal (for 7% enter .07) : .07
Enter the number of years : 20

principal = 1000.000000, rate = 0.070000, years = 20
amount = 1144.900000, interest = 144.900000

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Version #5

[* Filename: interest.c

* Author:

* Date written: 11/14//99

* Description: This program computes the interest accrued in an account

* that compounds interest annually. */
#include <stdio.h>

int main ()

{

float principal, rate, amount, interest ;

int years,i;

[* Print Instructions */

printf (“This program computes the interest accrued in an account that\n”);
printf (“compounds interest annually. You will need to enter the amount\n”);
printf (“of the principal, the interest rate and the number of years.\n\n");

[* Get input from user */

printf (“Enter the principal amount : “);

scanf (“%f”, &principal);

printf (“Enter the interest rate as a decimal (for 7%% enter .07) : *) ;
scanf (“%f”, &rate);

printf (“Enter the number of years : “),

scanf (“%d”, &years);

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Version #5 (con'’t)

[* Save the original principal amount by varying another variable, amount */
amount = principal;

[* Calculate total amount in the account after the specified number of years */
for (i=0;i<years;i++)

{
}

[* Calculate accrued interest */
Interest = amount - principal ;

amount += amount * rate ;

printf (“\nprincipal = %f, rate = %f, years = %d\n”, principal, rate, years ) ;
printf (“amount = %f, interest = %f\n”);

return O ;

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Output #5

This program computes the interest accrued in an account that
compounds interest annually. You will need to enter the amount
of the principal, the interest rate and the number of years.

Enter the principal amount : 1000.00

Enter the interest rate as a decimal (for 7% enter .07) : .07
Enter the number of years : 20

principal = 1000.000000, rate = 0.070000, years = 20
amount = 3869.680000, interest = 2869.680000

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Final Version

[* Filename: interest.c

* Author:

* Date written: 11/14//99

* Description: This program computes the interest accrued in an account

* that compounds interest annually. */
#include <stdio.h>

int main ()

{

float principal, rate, amount, interest ;

int years,i;

[* Print Instructions */

printf (“This program computes the interest accrued in an account that\n”);
printf (“compounds interest annually. You will need to enter the amount\n”);
printf (“of the principal, the interest rate and the number of years.\n\n");

[* Get input from user */

printf (“Enter the principal amount : “);

scanf (“%f”, &principal);

printf (“Enter the interest rate as a decimal (for 7%% enter .07) : *) ;
scanf (“%f”, &rate);

printf (“Enter the number of years : “),

scanf (“%d”, &years);

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Final Version (con'’t)

[* Save the original principal amount by varying another variable, amount */
amount = principal;

[* Calculate total amount in the account after the specified number of years */
for (i=0;i<years;it+)

{
}

[* Calculate accrued interest */
Interest = amount - principal ;

amount += amount * rate ;

[* Print report */

printf (“Interest rate : %.4f %%\n", 100 * rate ) ;

printf (“ Period : %d years\n\n”, years ) ;

printf (“ Principal at start of period : %9.2f", principal );
printf (* Interest accrued : %9.2f", interest );
printf (“Total amount at end of period : %9.2f”, amount);

return O ;

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Final Output

This program computes the interest accrued in an account that
compounds interest annually. You will need to enter the amount
of the principal, the interest rate and the number of years.

Enter the principal amount : 1000.00
Enter the interest rate as a decimal (for 7% enter .07) : .07
Enter the number of years : 20

Interest rate : 7.0000 %
Period : 20 years

Principal at start of period : 1000.00

Interest accrued : 2869.68
Total amount at end of period : 3869.68

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Top-Down Design

If we look at a problem as a whole, it may seem
Impossible to solve because it is so complex.
Examples:

— Writing a tax computation program
— Writing a word processor

Complex problems can be solved using top-
down design, also known as stepwise
refinement, where

— We break the problem into parts
— Then break the parts into parts
— Soon, each of the parts will be easy to do

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Advantages of Top-Down

Design
Breaking the problem into parts helps us to
clarify what needs to be done.

At each step of refinement, the new parts
become less complicated and, therefore,

easier to figure out.

Parts of the solution may turn out to be
reusable.

Breaking the problem into parts allows more
than one person to work on the solution.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




An Example of Top-Down
Design

e Problem:
— We own a home improvement company.

— We do painting, roofing, and basement
waterproofing.

— A section of town has recently flooded
(zip code 21222).

— We want to send out pamphlets to our
customers in that area.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




The Top Level

Get the customer list from a file.
Sort the list according to zip code.

Make a new file of only the customers with the zip
code 21222 from the sorted customer list.

Print an envelope for each of these customers.

Main

Read Sort Select Print

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Another Level?

Should any of these steps be broken down
further? Possibly.

How do | know? Ask yourself whether or
not you could easily write the algorithm for
the step. If not, break it down again.

When you are comfortable with the
breakdown, write the pseudocode for each
of the steps (modules) in the hierarchy.

Typically, each module will be coded as a
separate function.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Structured Programs

We will use top-down design for all remaining
programming projects.

This Is the standard way of writing programs.

Programs produced using this method and using
only the three kinds of control structures,
sequential, selection and repetition, are called
structured programs.

Structured programs are easier to test, modify,
and are also easier for other programmers to
understand.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Another Example

e Problem: Write a program that draws this
picture of a house.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




The Top Level

ne outline of the house
ne chimney

ne door

ne windows

Main

Draw Draw Draw
Outline Chimney Windows

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




1/12/2007

Pseudocode for Main

Draw Outline
Draw Chimney
Draw Door
Draw Windows

School of Computer Science

hmehta.scs@dauniv.ac.in




Observation

e The door has both a frame and knob. We
could break this into two steps.

Main

Draw Draw Draw
Outline Chimney Windows

Draw
Door Frame

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Pseudocode for Draw Door

Call Draw Door Frame
Call Draw Knob

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Another Observation

e There are three windows to be drawn.

Main

Draw Draw
Outline . Windows

Draw Draw Draw
Window 1 Window 2 Window 3

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




One Last Observation

e But don’t the windows look the same?
They just have different locations.

e S0, we can reuse the code that draws a

window.

— Simply copy the code three times and edit it to
place the window in the correct location, or

— Use the code three times, “sending it” the
correct location each time (we will see how to

do this later).
e This Iis an example of code reuse.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Reusing the Window Code

Draw Draw
Outline . Windows

Draw a
Window

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Pseudocode for Draw Windows

Ca
Ca
Ca

1/12/2007

Draw a WIinc
Draw a WInc

Draw a WIinc

oW, senc
oW, send

oW, sendc

School of Computer Science

INg In Location 1
INg In Location 2
INng In Location 3

hmehta.scs@dauniv.ac.in




Review of Structured
Programming

e Structured programming is a problem solving
strategy and a programming methodology that
iIncludes the following guidelines:

— The program uses only the sequence,

selection, and repetition control structures.

— The flow of control in the program should be
as simple as possible.

— The construction of a program embodies top-
down design.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Review of Top-Down Design

* Involves repeatedly decomposing a
problem into smaller problems

e Eventually leads to a collection of small
problems or tasks each of which can be

easily coded

 The function construct in C Is used to
write code for these small, simple
problems.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Functions

A C program is made up of one or more functions,
one of which is main( ).

e EXxecution always begins with main( ), no matter
where it Is placed in the program. By convention,
main( ) is located before all other functions.

 When program control encounters a function
name, the function is called (invoked).

— Program control passes to the function.
— The function is executed.

— Control Is passed back to the calling function.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Sample Function Call

#include <stdio.h>

Int main () printf is the name of a predefined
{ / function in the stdio library

printf (“Hello World'\n") ; ——egeemm this statement is
return O ; IS known as a
function call

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Functions (con'’t)

We have used few predefined functions such
as:

— printf
— scanf

—getchar

Programmers can write their own functions.

Typically, each module in a program’s design
hierarchy chart is implemented as a function.

C function names follow the same naming rules
as C variables.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Sample Programmer-Defined
Function

#include <stdio.h>

void printMessage ( void ) ;

Int main ()

{
printMessage () ;

return O ;

}

void printMessage ( void )

{

printf (“A message for you:\n\n") ;
printf (“Have a nice day!\n”) ;

}

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Examining printMessage

#include <stdio.h>

void printMessage ( void ) ; —-—eiiil———— function prototype

Int main ()

{
printMessage () ;

return O ;

void printMessage ( void ) ———i———— function header
{

printf (“A message for you:\n\n”) ; function
printf (“Have a nice day'\n”) ; body

I function definition

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




The Function Prototype

 Informs the compiler that there will be a function
defined later that:

returns this type

takes these arguments

#

void (void) :

 Needed because the function call is made before
the definition -- the compiler uses it to see if the
call is made properly

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




The Function Call

e Passes program control to the function

 Must match the prototype in name, number of
arguments, and types of arguments

void printMessage (void) ;

Int main () same name

{ l /

printMessage () ;
return O ;

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




The Function Definition

o Control Is passed to the function by the function
call. The statements within the function body will

then be executed.

void printMessage ( void )

{

printf (“A message for you:\n\n”) ;
printf (“Have a nice day'\n”) ;

}

After the statements in the function have
completed, control is passed back to the calling
function, in this case main( ) . Note that the
calling function does not have to be main() .

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




General Function Definition
Syntax

type functionName ( parameter,, . . . , parameter,, )

{

variable declaration(s)
SEEINERIS

}

If there are no parameters, either

functionName() OR functionName(void)
IS acceptable.
 There may be no variable declarations.

« If the function type (return type) is void, a return
statement is not required, but the following are permitted:

return; OR return( ) ;

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Using Input Parameters

void printMessage (int counter) ;
int main ()

{

int num;

printf (“Enter an integer: ) ;

scanf (“%d”, &num) ;

printMessage (num) ; «gmm ONe argument  matches the one formal parameter

return O ; of type int of type int
}

void printMessage (int counter) /

{
inti;
for (i=0; i< counter; i++)
{

printf (“Have a nice day'\n”) ;

}

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Final “Clean” C Code

#include <stdio.h>
void printMessage (int counter) ;

Int main ()

{

Int num ;  /* number of times to print message */

printf (“Enter an integer: “) ;
scanf (“%d”, &num) ;
printMessage (num) ;

return O ;

}

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Final “Clean” C Code (con’t)

/*************************************************************************

** printMessage - prints a message a specified number of times
** Inputs: counter - the number of times the message will be

* printed

** Qutputs: None

/*************************************************************************/

void printMessage ( int counter )

{

Inti; /*loop counter */
for (1=0; 1< counter; i++)

{

printf (“Have a nice day\n”) ;

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Good Programming Practice

 Notice the function header comment before the
definition of function printMessage.

e Your header comments should be neatly formatted
and contain the following information:

— function name

— function description (what it does)

— a list of any input parameters and their meanings
— a list of any output parameters and their meanings
— a description of any special conditions

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Functions Can Return Values

/****************************************************************************

** averageTwo - calculates and returns the average of two numbers
** |nputs: numl - an integer value

*x num2 - an integer value

** Outputs: the floating point average of numl and num?2

*****************************************************************************/

float averageTwo (int num1, int num2)

{

float average ; /* average of the two numbers */

average = (numl + num2)/2.0;
return average ;

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Using averageTwo

#include <stdio.h>
float averageTwo (int num1, int num?2) ;
int main ()
{
float ave ;
int valuel =5, value2 = 8 ;
ave = averageTwo (valuel, value?2) ;
printf (“The average of %d and %d is %f\n”, valuel, value2, ave) ;
return O ;

float averageTwo (int num1, int num2)

{

float average ;

average = (numl +num2)/2.0;
return average ;

}

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Parameter Passing

e Actual parameters are the parameters that
appear in the function call.

average = averageTwo (valuel, value?2) ;

 Formal parameters are the parameters that
appear in the function header.

float averageTwo (int num1, int num2)

 Actual and formal parameters are matched by
position. Each formal parameter receives the
value of its corresponding actual parameter.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Parameter Passing (con't)

e Corresponding actual and formal
parameters do not have to have the same
name, but they may.

e Corresponding actual and formal
parameters must be of the same data
type, with some exceptions.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Local Variables

~unctions only “see” (have access to) their own
ocal variables. This includes main() .

~ormal parameters are declarations of local
variables. The values passed are assigned to
those variables.

 Other local variables can be declared within the
function body.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Parameter Passing and Local
Variables

#include <stdio.h> float averageTwo (int num1, int num2)
float averageTwo (int num1, int numz2) ; {

int main () float average ;

{
float ave ; average = (numl + num2) /2.0 ;
int valuel =5, value2 = 8 ; return average ;

ave = averageTwo (valuel, value2) ;
printf (“The average of ) ;
printf (“%d and %d is %f\n”,
valuel, value2, ave) ;
return O ;

valuel value2 ave numz2 average

5 8

int int float int int float
1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Same Name, Still Different Memory
Locations

#include <stdio.h> float averageTwo (int num1, int num2)

float averageTwo (int num1, int numz2) ; {

int main () float average ;

{
float average ; average = (numl + num2) /2.0 ;
intnuml1l =5, num2=8; return average ;

average = averageTwo (numl,
numz2) ;
printf (“The average of “) ;
printf (“%d and %d is %f\n”,
numl, num2, average) ;
return O ;

numl num2 average num2 average

3} 38

int int float int int float
1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




~? to Local Variables Do NOT
Change Other Variables with the
#include <stdio.h> Same Name

void addOne (int number) ; void addOne (int num1)

{

Int main () numl++ ;
{ printf (“In addOne: “) ;
iIntnuml=5; printf (“numl1 = %d\n", numl) ;

addOne (num1l) ;

printf (“In main: ) ;

printf (“num1 = %d\n”, num1l) ;
return O ;

numl
5 OUTPUT
int In addOne: numl1 =6
In main: numl1=5

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




* Call by Value and Call by Reference

By Default the function calling is by Value i.e. there is no
relation between actual and formal parameter. Change In
formal parameter doesn't affect actual parameter.

In case if we require the value updated by a function, there
IS a provision for single updated value by using return
type of the function. But in case we require more than
one value the we must call the function by reference.

In case of call by reference we use pointers.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Header Files

 Header files contain function prototypes
for all of the functions found In the

specified library.
 They also contain definitions of constants
and data types used in that library.

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Commonly Used Header Files

Header File Contains Function Prototypes for:
<stdio.h> standard input/output library functions

and information used by them
<math.h> math library functions

<stdlib.h> conversion of numbers to text, text to
numbers, memory allocation, random
numbers, and other utility functions

<time.h> manipulating the time and date

<ctype.h> functions that test characters for certain
properties and that can convert case

<string.h> functions that manipulate character strings

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Using Header Files

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
Int main ()

{

float sidel, side2, hypotenuse ;

printf(“Enter the lengths of the right triangle sides: “) ;
scanf(“%f%f”, &sidel, &side?2) ;
If ((sidel <=0) || (side2 <=0) {

exit (1) ;

}

hypotenuse = sqrt ( (sidel * sidel) + (side2 * side2) ) ;
printf(*The hypotenuse = %f\n”, hypotenuse) ;

return O ;

}

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




User Defined Header Files

Save different functions in a file (extension .h). This file can
be used as header file. e.g. myheader.h

In order to include the this user defined header file we can
 Either put the file in the include folder.
* Or keep it in the current folder an include it with

#include “myheader.h”

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




The stack and the heap

Local variables, function arguments, return value
are stored on a stack

 Each function call generates a new "stack frame
o After function returns, stack frame disappears

— along with all local variables and function
arguments for that invocation

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




The stack and the heap

vol d contrived _exanple(int i, float f)
{

Int | = 10;

double d = 3. 14;

Int arr[ 10];

/[* do sone stuff, then return */

return (J + 1);

}

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




The stack and the heap

[* sonewhere I n code */
Int kK = contrived exanple(42, 3.3),

 \What does this look like on the stack?

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




The stack and the heap

A

: (more frames)

return value

function
arguments

r

> stack frame

local
variables

<

\.

<gar bage> Y

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




The stack and the heap

* Another example:
Int factorial (int 1)

{
1f (1 == 0) {
return 1;
} else {
return i1 * factorital (1 - 1);

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




The stack and the heap

 Pop quiz: what goes on the stack for
factorial (3)?

e For each stack frame, have...

— no local variables
— one argument (i )

— one return value

 Each recursive call generates a new stack frame
— which disappears after the call is complete

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




The stack and the heap

return value .
factorial (3) : > stack frame

-’

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




The stack and the heap

_ return value .
factorial (2) _ > stack frame

<

return value .
factorial (3) : > stack frame

-’

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




return value

factorial (1) e >~ stack frame

_ return value .
factorial (2) _ > stack frame

<

return value .
factorial (3) : > stack frame

-’

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




_ return value .
factorial (0) | > stack frame

_ return value :
factorial (1) | > stack frame

_ return value .
factorial (2) _ > stack frame

return value .
factorial (3) : > stack frame

-’

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




_ return value
factorial (0) | > stack frame

return value

factorial (1) e > stack frame

_ return value .
factorial (2) _ > stack frame

return value .
factorial (3) : > stack frame

-’

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




The stack and the heap

_ return value
factorial (1) | > stack frame

_ return value .
factorial (2) _ > stack frame

<

return value .
factorial (3) : > stack frame

-’

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




The stack and the heap

_ return value
factorial (2) _ > stack frame

<

return value .
factorial (3) : > stack frame

-’

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




The stack and the heap

return value
factorial (3) : > stack frame

-’

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




The stack and the heap

factori al (3)

result: 6

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




The stack and the heap

vol d foo() {
int arr[10]; /* local (on stack) */
[* do sonething wth arr */

} [* arr 1s deall ocated */

e Local variables sometimes called "automatic"
variables:; deallocation is automatic

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




The stack and the heap

Ic?cal ani oIS stack frame
variables <what ever >

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




The stack and the heap

The "heap" Is the general pool of computer
memory

Memory Is allocated on the heap using
mal | oc() orcal |l oc()

Heap memory must be explicitly freed using
free()

Failure to do so =2 memory leak!

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




The stack and the heap

voi d foo2() {

1/12/2007

Nt *arr;

/[* allocate nenory on the heap: */
arr = (int *)call oc(10, sizeof(int));
/[* do sonething wwth arr */

[* arr 1S NOT deall ocated */

School of Computer Science hmehta.scs@dauniv.ac.in



The stack and the heap

voi d foo3() {

1/12/2007

Nt *arr;

/[* allocate nenory on the heap: */
arr = (int *)call oc(10, sizeof(int));
/[* do sonething wwth arr */

free(arr);

School of Computer Science hmehta.scs@dauniv.ac.in



The stack and the heap

0x1234

arr [ O]

arr[ 1

arr |

2]
arr|[ 3]
7

f 002 and
f oo3

arr|

(etc.-)

local { arr =— heap

variables 0x1234 stack frame

stack

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




(after f 002
exits,
without
freeing
memory)

1/12/2007

The stack and the heap

0x1234

memory

leak

stack

School of Computer Science hmehta.scs@dauniv.ac.in




The stack and the heap

o 0x1234 | arr[ 0

arr[ 1

(after f 003 : :
exits, with : arr 2]
freeing ' arr[ 3

7

memory) arr|

(etc.-)

heap

stack

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




Thank You

1/12/2007 School of Computer Science hmehta.scs@dauniv.ac.in




